393 research outputs found

    Baryogenesis in the MSSM, nMSSM and NMSSM

    Get PDF
    We compare electroweak baryogenesis in the MSSM, nMSSM and NMSSM. We comment on the different sources of CP violation, the phase transition and constraints from EDM measurements.Comment: 6 pages, 4 figures. To appear in the proceedings of the 7th Conference on Strong and Electroweak Matter (SEWM06), Brookhaven National Laboratory, May 10-13, 200

    CP Violating Bubble Wall Profiles

    Get PDF
    We solve the equations of motion for a CP violating phase between the two Higgs doublets at the bubble wall of the MSSM electroweak phase transition. Contrary to earlier suggestions, we do not find indications of spontaneous ``transitional'' CP violation in the MSSM. On the other hand, in case there is explicit CP violation in the stop and chargino/neutralino sectors, the relative phase between the Higgses does become space dependent, but only mildly even in the maximal case. We also demonstrate that spontaneous CP violation within the bubble wall could occur, e.g., if the Higgs sector of the MSSM were supplemented by a singlet. Finally we point out some implications for baryogenesis computations

    From Double Chooz to Triple Chooz - Neutrino Physics at the Chooz Reactor Complex

    Full text link
    We discuss the potential of the proposed Double Chooz reactor experiment to measure the neutrino mixing angle sin22θ13\sin^2 2\theta_{13}. We especially consider systematical uncertainties and their partial cancellation in a near and far detector operation, and we discuss implications of a delayed near detector startup. Furthermore, we introduce Triple Chooz, which is a possible upgrade scenario assuming a second, larger far detector, which could start data taking in an existing cavern five years after the first far detector. We review the role of the Chooz reactor experiments in the global context of future neutrino beam experiments. We find that both Double Chooz and Triple Chooz can play a leading role in the search for a finite value of sin22θ13\sin^2 2\theta_{13}. Double Chooz could achieve a sensitivity limit of 2102\sim 2 \cdot 10^{-2} at the 90%~confidence level after 5~years while the Triple Chooz setup could give a sensitivity below 10210^{-2}.Comment: 18 pages, 6 figure

    Heavy-quark condensate at zero- and nonzero temperatures for various forms of the short-distance potential

    Get PDF
    With the use of the world-line formalism, the heavy-quark condensate in the SU(N)-QCD is evaluated for the cases when the next-to-1/r term in the quark-antiquark potential at short distances is either quadratic, or linear. In the former case, the standard QCD-sum-rules result is reproduced, while the latter result is a novel one. Explicitly, it is UV-finite only in less than four dimensions. This fact excludes a possibility to have, in four dimensions, very short strings (whose length has the scale of the lattice spacing), and consequently the short-range linear potential (if it exists) cannot violate the OPE. In any number of dimensions, the obtained novel expression for the quark condensate depends on the string tension at short distances, rather than on the gluon condensate, and grows linearly with the number of colors in the same way as the standard QCD-sum-rules expression. The use of the world-line formalism enables one to generalize further both results to the case of finite temperatures. A generalization of the QCD-sum-rules expression to the case of an arbitrary number of space-time dimensions is also obtained and is shown to be UV-finite, provided this number is smaller than six.Comment: 11 pages, no figure

    A new design for the CERN-Fr\'ejus neutrino Super Beam

    Full text link
    We present an optimization of the hadron focusing system for a low-energy high-intensity conventional neutrino beam (Super-Beam) proposed on the basis of the HP-SPL at CERN with a beam power of 4 MW and an energy of 4.5 GeV. The far detector would be a 440 kton Water Cherenkov detector (MEMPHYS) located at a baseline of 130 km in the Fr\'ejus site. The neutrino fluxes simulation relies on a new GEANT4 based simulation coupled with an optimization algorithm based on the maximization of the sensitivity limit on the θ13\theta_{13} mixing angle. A new configuration adopting a multiple horn system with solid targets is proposed which improves the sensitivity to θ13\theta_{13} and the CP violating phase δCP\delta_{CP}.Comment: 11 pages, 18 figures, 2 table

    Electroweak Baryogenesis: Concrete in a SUSY Model with a Gauge Singlet

    Get PDF
    SUSY models with a gauge singlet easily allow for a strong first order electroweak phase transition (EWPT) if the vevs of the singlet and Higgs fields are of comparable size. We discuss the profile of the stationary expanding bubble wall and CP-violation in the effective potential, in particular transitional CP-violation inside the bubble wall during the EWPT. The dispersion relations for charginos contain CP-violating terms in the WKB approximation. These enter as source terms in the Boltzmann equations for the (particle--antiparticle) chemical potentials and fuel the creation of a baryon asymmetry through the weak sphaleron in the hot phase. This is worked out for concrete parameters.Comment: 46 pages, LaTeX, 11 figures, discussion of source terms and transport equations modified, version to appear in Nucl. Phys.

    Pressure and interaction measure of the gluon plasma

    Full text link
    We explore the thermodynamics of the gluon plasma in SU(3) Yang-Mills theory emerging from the non-trivial spatial dynamics of valence gluons. The lattice data suggest that these gluons interact with each other linearly at large spatial separations. At high temperatures, valence gluons should reproduce the pressure of the non-interacting Stefan-Boltzmann plasma along with the leading perturbative correction. These properties of valence gluons can be modeled in terms of the integral over their trajectories. We calculate such a world-line integral analytically and obtain the pressure and the interaction measure (ε3p)/T4(\varepsilon-3p)/T^4 of the gluon plasma. Additionally, we account for the contributions of stochastic background fields to these thermodynamic quantities. The results turn out to be in a good agreement with the corresponding lattice data. In particular, the lattice-simulated peak of the interaction measure near the deconfinement critical temperature is reproduced.Comment: 20 pages, 5 figures. Final version. To appear in Nucl. Phys.

    Measurement Near Threshold of 9-Be(3-He, Pi) to the A = 12 Isobaric Triplet by Recoil Detection

    Get PDF
    This work was supported by the National Science Foundation Grant NSF PHY 81-14339 and by Indiana Universit

    Optimum electrode configurations for fast ion separation in microfabricated surface ion traps

    Full text link
    For many quantum information implementations with trapped ions, effective shuttling operations are important. Here we discuss the efficient separation and recombination of ions in surface ion trap geometries. The maximum speed of separation and recombination of trapped ions for adiabatic shuttling operations depends on the secular frequencies the trapped ion experiences in the process. Higher secular frequencies during the transportation processes can be achieved by optimising trap geometries. We show how two different arrangements of segmented static potential electrodes in surface ion traps can be optimised for fast ion separation or recombination processes. We also solve the equations of motion for the ion dynamics during the separation process and illustrate important considerations that need to be taken into account to make the process adiabatic
    corecore