29 research outputs found
Genome wide linkage scan for loci of musical aptitude in Finnish families: Evidence for a major locus at 4q22
ABSTRACT Background: Music perception and performance are comprehensive human cognitive functions and thus provide an excellent model system for studying human behaviour and brain function. However, the molecules involved in mediating music perception and performance are so far uncharacterized
Coordinated Expression Domains in Mammalian Genomes
Gene order in eukaryotic genomes is not random. Genes showing similar expression (coexpression) patterns are often clustered along the genome. The goal of this study is to characterize coexpression clustering in mammalian genomes and to investigate the underlying mechanisms.We detect clustering of coexpressed genes across multiple scales, from neighboring genes to chromosomal domains that span tens of megabases and, in some cases, entire chromosomes. Coexpression domains may be positively or negatively correlated with other domains, within and between chromosomes. We find that long-range expression domains are associated with gene density, which in turn is related to physical organization of the chromosomes within the nucleus. We show that gene expression changes between healthy and diseased tissue samples occur in a gene density-dependent manner.We demonstrate that coexpression domains exist across multiple scales. We identify potential mechanisms for short-range as well as long-range coexpression domains. We provide evidence that the three-dimensional architecture of the chromosomes may underlie long-range coexpression domains. Chromosome territory reorganization may play a role in common human diseases such as Alzheimer's disease and psoriasis
Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse
Fitting generalised linear models (GLMs) with more than one predictor has become the standard method of analysis in evolutionary and behavioural research. Often, GLMs are used for exploratory data analysis, where one starts with a complex full model including interaction terms and then simplifies by removing non-significant terms. While this approach can be useful, it is problematic if significant effects are interpreted as if they arose from a single a priori hypothesis test. This is because model selection involves cryptic multiple hypothesis testing, a fact that has only rarely been acknowledged or quantified. We show that the probability of finding at least one ‘significant’ effect is high, even if all null hypotheses are true (e.g. 40% when starting with four predictors and their two-way interactions). This probability is close to theoretical expectations when the sample size (N) is large relative to the number of predictors including interactions (k). In contrast, type I error rates strongly exceed even those expectations when model simplification is applied to models that are over-fitted before simplification (low N/k ratio). The increase in false-positive results arises primarily from an overestimation of effect sizes among significant predictors, leading to upward-biased effect sizes that often cannot be reproduced in follow-up studies (‘the winner's curse’). Despite having their own problems, full model tests and P value adjustments can be used as a guide to how frequently type I errors arise by sampling variation alone. We favour the presentation of full models, since they best reflect the range of predictors investigated and ensure a balanced representation also of non-significant results
Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche.
Age at menarche is a marker of timing of puberty in females. It varies widely between individuals, is a heritable trait and is associated with risks for obesity, type 2 diabetes, cardiovascular disease, breast cancer and all-cause mortality. Studies of rare human disorders of puberty and animal models point to a complex hypothalamic-pituitary-hormonal regulation, but the mechanisms that determine pubertal timing and underlie its links to disease risk remain unclear. Here, using genome-wide and custom-genotyping arrays in up to 182,416 women of European descent from 57 studies, we found robust evidence (P < 5 × 10(-8)) for 123 signals at 106 genomic loci associated with age at menarche. Many loci were associated with other pubertal traits in both sexes, and there was substantial overlap with genes implicated in body mass index and various diseases, including rare disorders of puberty. Menarche signals were enriched in imprinted regions, with three loci (DLK1-WDR25, MKRN3-MAGEL2 and KCNK9) demonstrating parent-of-origin-specific associations concordant with known parental expression patterns. Pathway analyses implicated nuclear hormone receptors, particularly retinoic acid and γ-aminobutyric acid-B2 receptor signalling, among novel mechanisms that regulate pubertal timing in humans. Our findings suggest a genetic architecture involving at least hundreds of common variants in the coordinated timing of the pubertal transition
In Vitro vs In Silico Detected SNPs for the Development of a Genotyping Array: What Can We Learn from a Non-Model Species?
Background: There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (~23.8 Gb/C). [br/]
Methodology/Principal Findings: A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). [br/]
Conclusions/Significance: This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome
Influence of age, sex and genetic factors on the human brain
We report effects of age, age2, sex and additive genetic factors on variability in gray matter thickness, surface area and white matter integrity in 1,010 subjects from the Genetics of Brain Structure and Function Study. Age was more strongly associated with gray matter thickness and fractional anisotropy of water diffusion in white matter tracts, while sex was more strongly associated with gray matter surface area. Widespread heritability of neuroanatomic traits was observed, suggesting that brain structure is under strong genetic control. Furthermore, our findings indicate that neuroimaging-based measurements of cerebral variability are sensitive to genetic mediation. Fundamental studies of genetic influence on the brain will help inform gene discovery initiatives in both clinical and normative samples
The genetic architecture of sexually selected traits in two natural populations of Drosophila montana
The work was supported by the National Environment Research Council (grant NE/E015255/1 to MGR and RKB) and the Academy of Finland (project 132619 to AH).We investigated the genetic architecture of courtship song and cuticular hydrocarbon traits in two phygenetically distinct populations of Drosophila montana. To study natural variation in these two important traits, we analysed within-population crosses among individuals sampled from the wild. Hence, the genetic variation analysed should represent that available for natural and sexual selection to act upon. In contrast to previous between-population crosses in this species, no major quantitative trait loci (QTLs) were detected, perhaps because the between-population QTLs were due to fixed differences between the populations. Partitioning the trait variation to chromosomes suggested a broadly polygenic genetic architecture of within-population variation, although some chromosomes explained more variation in one population compared with the other. Studies of natural variation provide an important contrast to crosses between species or divergent lines, but our analysis highlights recent concerns that segregating variation within populations for important quantitative ecological traits may largely consist of small effect alleles, difficult to detect with studies of moderate power.PostprintPeer reviewe