12 research outputs found

    A Qualitative Study on Concerns, Needs, and Expectations of Hospital Patients Related to Climate Change: Arguments for a Patient-Centered Adaptation

    Get PDF
    This study explores the concerns, needs, and expectations of inpatients with the goal to develop a patient-centered climate change adaptation agenda for hospitals. Statements of patients from geriatrics, internal medicine, psychiatry, and surgery (N = 25) of a German tertiary care hospital were analyzed using semi-structured interviews and the framework method. Areas of future adaptation were elaborated in joint discussions with transdisciplinary experts. Concerns included the foresight of severe health problems. The requested adaptations comprised the change to a patient-centered care, infrastructural improvements including air conditioning, and adjustments of the workflows. Guidelines for the behavior of patients and medical services appropriate for the climatic conditions were demanded. The patient-centered agenda for adaptation includes the steps of partnering with patients, reinforcing heat mitigation, better education for patients and medical staff, and adjusting work processes. This is the first study demonstrating that hospital patients are gravely concerned and expect adjustments according to climate change. Since heat is seen as a major risk by interviewees, the fast implementation of published recommendations is crucial. By synthesizing inpatients' expectations with scientific recommendations, we encourage patient-centered climate change adaptation. This can be the start for further collaboration with patients to create climate change resilient hospitals

    Diagnostic and prognostic benefit of arterial spin labeling in subacute stroke

    Get PDF
    Background and Purpose: Brain perfusion measurement in the subacute phase of stroke may support therapeutic decisions. We evaluated whether arterial spin labeling (ASL), a noninvasive perfusion imaging technique based on magnetic resonance imaging (MRI), adds diagnostic and prognostic benefit to diffusion-weighted imaging (DWI) in subacute stroke. Methods: In a single-center imaging study, patients with DWI lesion(s) in the middle cerebral artery (MCA) territory were included. Onset to imaging time was ≤ 7 days and imaging included ASL and DWI sequences. Qualitative (standardized visual analysis) and quantitative perfusion analyses (region of interest analysis) were performed. Dichotomized early outcome (modified Rankin Scale [mRS] 0-2 vs. 3-6) was analyzed in two logistic regression models. Model 1 included DWI lesion volume, age, vascular pathology, admission NIHSS, and acute stroke treatment as covariates. Model 2 added the ASL-based perfusion pattern to Model 1. Receiver-operating-characteristic (ROC) and area-under-the-curve (AUC) were calculated for both models to assess their predictive power. The likelihood-ratio-test compared both models. Results: Thirty-eight patients were included (median age 70 years, admission NIHSS 4, onset to imaging time 67 hr, discharge mRS 2). Qualitative perfusion analysis yielded additional diagnostic information in 84% of the patients. In the quantitative analysis, AUC for outcome prediction was 0.88 (95% CI 0.77-0.99) for Model 1 and 0.97 (95% CI 0.91-1.00) for Model 2. Inclusion of perfusion data significantly improved performance and outcome prediction (p = 0.002) of stroke imaging. Conclusions: In patients with subacute stroke, our study showed that adding perfusion imaging to structural imaging and clinical data significantly improved outcome prediction. This highlights the usefulness of ASL and noninvasive perfusion biomarkers in stroke diagnosis and management

    Charlemagne's Summit Canal: An Early Medieval Hydro-Engineering Project for Passing the Central European Watershed

    Get PDF
    <div><p>The Central European Watershed divides the Rhine-Main catchment and the Danube catchment. In the Early Medieval period, when ships were important means of transportation, Charlemagne decided to link both catchments by the construction of a canal connecting the Schwabian Rezat and the Altmühl rivers. The artificial waterway would provide a continuous inland navigation route from the North Sea to the Black Sea. The shortcut is known as Fossa Carolina and represents one of the most important Early Medieval engineering achievements in Europe. Despite the important geostrategic relevance of the construction it is not clarified whether the canal was actually used as a navigation waterway. We present new geophysical data and <i>in situ</i> findings from the trench fills that prove for the first time a total length of the constructed Carolingian canal of at least 2300 metres. We have evidence for a conceptual width of the artificial water course between 5 and 6 metres and a water depth of at least 60 to 80 cm. This allows a crossing way passage of Carolingian cargo scows with a payload of several tons. There is strong evidence for clayey to silty layers in the trench fills which reveal suspension load limited stillwater deposition and, therefore, the evidence of former Carolingian and post-Carolingian ponds. These findings are strongly supported by numerous sapropel layers within the trench fills. Our results presented in this study indicate an extraordinarily advanced construction level of the known course of the canal. Here, the excavated levels of Carolingian trench bottoms were generally sufficient for the efficient construction of stepped ponds and prove a final concept for a summit canal. We have evidence for the artificial Carolingian dislocation of the watershed and assume a sophisticated Early Medieval hydrological engineering concept for supplying the summit of the canal with adequate water.</p></div
    corecore