33 research outputs found

    Challenges and success factors for implementation of lean manufacturing in European SMES

    Get PDF
    Small and medium-sized enterprises are crucial to value creation in the European economy. The SMEs need continuous improvement initiatives to stay competitive. However, SMEs are less likely to implement lean practices compared to larger companies. Limited research exists on the factors that are vital for succeeding with Lean implementations in SMEs. A case study of Norwegian and Belgium SMEs has been conducted in the European research project ERIP (European Regions for Innovative Productivity). Six critical success factors are suggested, which correspond well with previous research: 1) Ensure strong management involvement. 2) Develop thorough employee participation. 3) Allocate sufficient time for preparing the organisation. 4) Focus on creating motivation to complete initiatives. 5) Build competence internally in the organisation. 6) Establish a performance evaluation system

    Alternative line delivery strategies support a forklift free transition in a high product variety environment

    Get PDF
    Forklift transport fails when it comes to efficiency. As a result, more and more attention is going to alternative transport systems that automate or further structure the material flow; such as line deliveries by train and conveyor technology. Only substituting the transport system itself is not cost-effective. The resulting improvements are rather low compared to the high investment cost. Therefore, in this paper alternative material flow and line delivery strategies are taken into consideration. Within a high product variety environment a combination of materials kitting and line stocking is proposed. This approach has some important benefits on top of the pure forklift free transition. A basic model is constructed to calculate the kitting area and transport system requirements. A truck assembly company is used as case study. A feasibility study is carried out, to give a rough indication of the cost-effectiveness of the model

    Combining scripting and commercial simulation software to simulate in-plant logistics

    Get PDF
    In this paper we describe the use of a commercial discrete event simulation package (Siemens 2008) combined with a custom program, written in the programming language Python (Martelli 2006). Combining these two makes it possible to automatically generate a model for assembly line logistics simulation. The different stations of the assembly line, their connections and the storage near the assembly line were generated within seconds. A huge amount of time was saved compared with manual generation

    A design method for parts picking zones in a manufacturing environment

    Get PDF
    This paper describes a method for the design of an order picking system in a manufacturing environment. Unlike order picking systems in warehouses, there is almost no literature available concerning order picking systems in a manufacturing environment. We start by defining the needed input parameters, followed by a parts classification method. This leads to the calculation of order specifications (order lines, volume, weight,…). The needed throughput, available floor space and associated costs then define the most appropriate order picking system under the given circumstances

    Forklift free factory: a simulation model to evaluate different transportation systems in the automotive industry

    Get PDF
    This paper describes the results of a large project executed in the automotive industry. The goal of the project was to simulate different transportation systems (EMS, AGV and tugger) in order to compare their performances. In our simulation, we focused on investigating the following parameters: amount of loading stations, equipment and operators needed, and storage place at the line

    Nuclear imaging for diagnosing fracture-related infection

    Get PDF
    Purpose Fracture-related infection (FRI) is a complication of surgical fracture treatment and can be challenging to diagnose. Recent studies show promising results for the use of either FDG-PET/CT or WBC/anti-granulocyte scintigraphy. The purpose of this pictorial essay is to outline recent developments in nuclear imaging techniques to diagnose FRI. Methods The current literature on this topic is reviewed. Additionally, three examples of patients who underwent nuclear imaging as part of their clinical work-up and surgical treatment for FRI are presented. Results Based on recent retrospective studies, FDG-PET/CT (accuracy 0.83) and WBC scintigraphy with SPECT/CT (accuracy 0.92) both have a good diagnostic accuracy for diagnosing fracture-related infection. Nuclear imaging contributes to a correct diagnosis in patients with FRI. Conclusion Retrospective studies show promising results for both FDG-PET/CT and WBC scintigraphy with SPECT/CT in diagnosing FRI. A prospective, multicenter study (IFI trial), directly comparing MRI, FDG-PET/CT, and WBC scintigraphy with SPECT/CT in patients with suspected FRI, is currently in progress

    Effectiveness of the AS03-Adjuvanted Vaccine against Pandemic Influenza Virus A/(H1N1) 2009 – A Comparison of Two Methods; Germany, 2009/10

    Get PDF
    During the autumn wave of the pandemic influenza virus A/(H1N1) 2009 (pIV) the German population was offered an AS03-adjuvanted vaccine. The authors compared results of two methods calculating the effectiveness of the vaccine (VE). The test-negative case-control method used data from virologic surveillance including influenza-positive and negative patients. An innovative case-series methodology explored data from all nationally reported laboratory-confirmed influenza cases. The proportion of reported cases occurring in vaccinees during an assumed unprotected phase after vaccination was compared with that occurring in vaccinees during their assumed protected phase. The test-negative case-control method included 1,749 pIV cases and 2,087 influenza test-negative individuals of whom 6 (0.3%) and 36 (1.7%), respectively, were vaccinated. The case series method included data from 73,280 cases. VE in the two methods was 79% (95% confidence interval (CI) = 35–93%; P = 0.007) and 87% (95% CI = 78–92%; P<0.001) for individuals less than 14 years of age and 70% (95% CI = −45%–94%, P = 0.13) and 74% (95% CI = 64–82%; P<0.001) for individuals above the age of 14. Both methods yielded similar VE in both age groups; and VE for the younger age group seemed to be higher

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore