2,431 research outputs found
Mantle formation, coagulation and the origin of cloud/core-shine: II. Comparison with observations
Many dense interstellar clouds are observable in emission in the near-IR,
commonly referred to as "Cloudshine", and in the mid-IR, the so-called
"Coreshine". These C-shine observations have usually been explained with grain
growth but no model has yet been able to self-consistently explain the dust
spectral energy distribution from the near-IR to the submm. We want to
demonstrate the ability of our new core/mantle evolutionary dust model THEMIS
(The Heterogeneous dust Evolution Model at the IaS), which has been shown to be
valid in the far-IR and submm, to reproduce the C-shine observations. Our
starting point is a physically motivated core/mantle dust model. It consists of
3 dust populations: small aromatic-rich carbon grains; bigger core/mantle
grains with mantles of aromatic-rich carbon and cores either made of amorphous
aliphatic-rich carbon or amorphous silicate. We assume an evolutionary path
where these grains, when entering denser regions, may first form a second
aliphatic-rich carbon mantle (coagulation of small grains, accretion of carbon
from the gas phase), second coagulate together to form large aggregates, and
third accrete gas phase molecules coating them with an ice mantle. To compute
the corresponding dust emission and scattering, we use a 3D Monte-Carlo
radiative transfer code. We show that our global evolutionary dust modelling
approach THEMIS allows us to reproduce C-shine observations towards dense
starless clouds. Dust scattering and emission is most sensitive to the cloud
central density and to the steepness of the cloud density profile. Varying
these two parameters leads to changes, which are stronger in the near-IR, in
both the C-shine intensity and profile. With a combination of aliphatic-rich
mantle formation and low-level coagulation into aggregates, we can
self-consistently explain the observed C-shine and far-IR/submm emission
towards dense starless clouds.Comment: Paper accepted for publication in A&A with companion paper "Mantle
formation, coagulation and the origin of cloud/core-shine: I. Dust scattering
and absorption in the IR", A.P Jones, M. Koehler, N. Ysard, E. Dartois, M.
Godard, L. Gavila
Discovery of interstellar mercapto radicals (SH) with the GREAT instrument on SOFIA
We report the first detection of interstellar mercapto radicals, obtained
along the sight-line to the submillimeter continuum source W49N. We have used
the GREAT instrument on SOFIA to observe the 1383 GHz Doublet Pi 3/2 J = 5/2 -
3/2 lambda doublet in the upper sideband of the L1 receiver. The resultant
spectrum reveals SH absorption in material local to W49N, as well as in
foreground gas, unassociated with W49N, that is located along the sight-line.
For the foreground material at velocities in the range 37 - 44 km/s with
respect to the local standard of rest, we infer a total SH column density ~ 2.6
E+12 cm-2, corresponding to an abundance of ~ 7 E-9 relative to H2, and
yielding an SH/H2S abundance ratio ~ 0.13. The observed SH/H2S abundance ratio
is much smaller than that predicted by standard models for the production of SH
and H2S in turbulent dissipation regions and shocks, and suggests that the
endothermic neutral-neutral reaction SH + H2 -> H2S + H must be enhanced along
with the ion-neutral reactions believed to produce CH+ and SH+ in diffuse
molecular clouds.Comment: Accepted for publication in Astronomy and Astrophysics (SOFIA/GREAT
special issue
Towards the noise reduction of piezoelectrical-driven synthetic jet actuators
This paper details an experimental investigation aimed at reducing the noise output of piezoelectrical-driven synthetic jet actuators without compromising peak jet velocity. Specifically, the study considers double-chamber ('back-to-back') actuators for anti-phase noise suppression and corrugated-lobed orifices as a method to enhance turbulent mixing of the jets to suppress jet noise. The study involved the design, manufacture and bench test of interchangeable actuator hardware. Hot-wire anemometry and microphone recordings were employed to acquire velocity and noise measurements respectively for each chamber configuration and orifice plate across a range of excitation frequencies and for a fixed input voltage. The data analysis indicated a 32% noise reduction (20 dBA) from operating a singlechamber, circular orifice SJA to a double-chamber, corrugated-lobed orifice SJA at the Helmholtz resonant frequency. Results also showed there was a small reduction in peak jet velocity of 7% (~3 m/s) between these two cases based on orifices of the same discharge area. Finally, the electrical-to-fluidic power conversion efficiency of the double-chamber actuator was found to be 15% across all orifice designs at the resonant frequency; approximately double the efficiency of a single-chamber actuator. This work has thus demonstrated feasible gains in noise reduction and power efficiency through synthetic jet actuator design
High-resolution absorption spectroscopy of the OH 2Pi 3/2 ground state line
The chemical composition of the interstellar medium is determined by gas
phase chemistry, assisted by grain surface reactions, and by shock chemistry.
The aim of this study is to measure the abundance of the hydroxyl radical (OH)
in diffuse spiral arm clouds as a contribution to our understanding of the
underlying network of chemical reactions. Owing to their high critical density,
the ground states of light hydrides provide a tool to directly estimate column
densities by means of absorption spectroscopy against bright background
sources. We observed onboard the SOFIA observatory the 2Pi3/2, J = 5/2 3/2 2.5
THz line of ground-state OH in the diffuse clouds of the Carina-Sagittarius
spiral arm. OH column densities in the spiral arm clouds along the sightlines
to W49N, W51 and G34.26+0.15 were found to be of the order of 10^14 cm^-2,
which corresponds to a fractional abundance of 10^-7 to 10^-8, which is
comparable to that of H_2O. The absorption spectra of both species have similar
velocity components, and the ratio of the derived H_2O to OH column densities
ranges from 0.3 to 1.0. In W49N we also detected the corresponding line of
^18OH
Spatial distribution of far-infrared rotationally excited CH<sup>+</sup> and OH emission lines in the Orion Bar photodissociation region
Context. The methylidyne cation (CH+) and hydroxyl (OH) are key molecules in the warm interstellar chemistry, but their formation and excitation mechanisms are not well understood. Their abundance and excitation are predicted to be enhanced by the presence of vibrationally excited H2 or hot gas (~500−1000 K) in photodissociation regions (PDRs) with high incident far-ultraviolet (FUV) radiation field. The excitation may also originate in dense gas (>105 cm-3) followed by nonreactive collisions with H2, H, and electrons. Previous observations of the Orion Bar suggest that the rotationally excited CH+ and OH correlate with the excited CO, which is a tracer of dense and warm gas, and that formation pumping contributes to CH+ excitation.Aims. Our goal is to examine the spatial distribution of the rotationally excited CH+ and OH emission lines in the Orion Bar to establish their physical origin and main formation and excitation mechanisms.Methods. We present spatially sampled maps of the CH+ J = 3–2 transition at 119.8 μm and the OH Λ doublet at 84 μm in the Orion Bar over an area of 110″× 110″ with Herschel/PACS. We compare the spatial distribution of these molecules with those of their chemical precursors, C+ , O and H2, and tracers of warm and dense gas (high-
J CO). We assess the spatial variation of the CH+ J = 2–1 velocity-resolved line profile at 1669 GHz with Herschel/HIFI spectrometer observations.Results. The OH and especially CH+ lines correlate well with the high-J CO emission and delineate the warm and dense molecular region at the edge of the Bar. While notably similar, the differences in the CH+ and OH morphologies indicate that CH+ formation and excitation are strongly related to the observed vibrationally excited H2. This, together with the observed broad CH+ line widths, indicates that formation pumping contributes to the excitation of this reactive molecular ion. Interestingly, the peak of the rotationally excited OH 84 μm emission coincides with a bright young object, proplyd 244–440, which shows that OH can be an excellent tracer of UV-irradiated dense gas.Conclusions. The spatial distribution of CH+ and OH revealed in our maps is consistent with previous modeling studies. Both formation pumping and nonreactive collisions in a UV-irradiated dense gas are important CH+ J = 3–2 excitation processes. The excitation of the OH Λ doublet at 84 μm is mainly sensitive to the temperature and density
OH+ in astrophysical media: state-to-state formation rates, Einstein coefficients and inelastic collision rates with He
The rate constants required to model the OH observations in different
regions of the interstellar medium have been determined using state of the art
quantum methods.
First, state-to-state rate constants for the H+ O()
H + OH reaction have been obtained using
a quantum wave packet method. The calculations have been compared with
time-independent results to asses the accuracy of reaction probabilities at
collision energies of about 1 meV. The good agreement between the simulations
and the existing experimental cross sections in the 1 eV energy range
shows the quality of the results.
The calculated state-to-state rate constants have been fitted to an
analytical form. Second, the Einstein coefficients of OH have been obtained
for all astronomically significant ro-vibrational bands involving the
and/or electronic states.
For this purpose the potential energy curves and electric dipole transition
moments for seven electronic states of OH are calculated with {\it ab
initio} methods at the highest level and including spin-orbit terms, and the
rovibrational levels have been calculated including the empirical spin-rotation
and spin-spin terms. Third, the state-to-state rate constants for inelastic
collisions between He and OH have been calculated using a
time-independent close coupling method on a new potential energy surface. All
these rates have been implemented in detailed chemical and radiative transfer
models. Applications of these models to various astronomical sources show that
inelastic collisions dominate the excitation of the rotational levels of
OH. In the models considered the excitation resulting from the chemical
formation of OH increases the line fluxes by about 10 % or less depending
on the density of the gas
Sulphur-bearing molecules in diffuse molecular clouds: new results from SOFIA/GREAT and the IRAM 30 m telescope
We have observed five sulphur-bearing molecules in foreground diffuse
molecular clouds lying along the sight-lines to five bright continuum sources.
We have used the GREAT instrument on SOFIA to observe the 1383 GHz transitions of SH towards the star-forming regions W31C,
G29.96-0.02, G34.3+0.1, W49N and W51, detecting foreground absorption towards
all five sources; and the EMIR receivers on the IRAM 30m telescope at Pico
Veleta to detect the HS 1(10)-1(01), CS J=2-1 and SO 3(2)-2(1) transitions.
In nine foreground absorption components detected towards these sources, the
inferred column densities of the four detected molecules showed relatively
constant ratios, with N(SH)/N(HS) in the range 1.1 - 3.0, N(CS)/N(HS)
in the range 0.32 - 0.61, and N(SO)/N(HS) in the range 0.08 - 0.30. The
observed SH/H ratios - in the range (0.5-2.6) - indicate
that SH (and other sulphur-bearing molecules) account for << 1% of the
gas-phase sulphur nuclei. The observed abundances of sulphur-bearing molecules,
however, greatly exceed those predicted by standard models of cold diffuse
molecular clouds, providing further evidence for the enhancement of endothermic
reaction rates by elevated temperatures or ion-neutral drift. We have
considered the observed abundance ratios in the context of shock and turbulent
dissipation region (TDR) models. Using the TDR model, we find that the
turbulent energy available at large scale in the diffuse ISM is sufficient to
explain the observed column densities of SH and CS. Standard shock and TDR
models, however, fail to reproduce the column densities of HS and SO by a
factor of about 10; more elaborate shock models - in which account is taken of
the velocity drift, relative to H, of SH molecules produced by the
dissociative recombination of HS - reduce this discrepancy to a factor
~ 3.Comment: 30 pages, accepted for publication in A&
The use of nasal mupirocin ointment to prevent Staphylococcus aureus bacteraemias in haemodialysis patients: an analysis of cost- effectiveness
Nasal carriage of Staphylococcus aureus is a risk factor for the development of infections caused by S. aureus in haemodialysis patients. This study compared the incidence of bacteraemia caused by S. aureus during 6 months of use of nasal 2% calcium mupirocin ('Nasal Bactroban') 3-times a week for nasal carriers with the incidence observed previously in the same dialysis unit without the use of mupirocin. Nasal mupirocin led to the total eradication of nasal carriage of S. aureus, a 4.26-fold reduction in the incidence of S. aureus bacteraemia, and a substantial cost saving. After a cumulative experience of nasal mupirocin in haemodialysis patients of more than 43 patient-years, the development of mupirocin resistance was not observed
A Very Low Resource Language Speech Corpus for Computational Language Documentation Experiments
Most speech and language technologies are trained with massive amounts of
speech and text information. However, most of the world languages do not have
such resources or stable orthography. Systems constructed under these almost
zero resource conditions are not only promising for speech technology but also
for computational language documentation. The goal of computational language
documentation is to help field linguists to (semi-)automatically analyze and
annotate audio recordings of endangered and unwritten languages. Example tasks
are automatic phoneme discovery or lexicon discovery from the speech signal.
This paper presents a speech corpus collected during a realistic language
documentation process. It is made up of 5k speech utterances in Mboshi (Bantu
C25) aligned to French text translations. Speech transcriptions are also made
available: they correspond to a non-standard graphemic form close to the
language phonology. We present how the data was collected, cleaned and
processed and we illustrate its use through a zero-resource task: spoken term
discovery. The dataset is made available to the community for reproducible
computational language documentation experiments and their evaluation.Comment: accepted to LREC 201
Comparative study of CH+ and SH+ absorption lines observed towards distant star-forming regions
Aims. The HIFI instrument onboard Herschel has allowed high spectral
resolution and sensitive observations of ground-state transi- tions of three
molecular ions: the methylidyne cation CH+, its isotopologue 13CH+, and
sulfanylium SH+. Because of their unique chemical properties, a comparative
analysis of these cations provides essential clues to the link between the
chemistry and dynamics of the diffuse interstellar medium. Methods. The CH+,
13CH+, and SH+ lines are observed in absorption towards the distant high-mass
star-forming regions (SFRs) DR21(OH), G34.3+0.1, W31C, W33A, W49N, and W51, and
towards two sources close to the Galactic centre, SgrB2(N) and SgrA*+50. All
sight lines sample the diffuse interstellar matter along pathlengths of several
kiloparsecs across the Galactic Plane. In order to compare the velocity
structure of each species, the observed line profiles were deconvolved from the
hyperfine structure of the SH+ transition and the CH+, 13CH+, and SH+ spectra
were independently decomposed into Gaussian velocity components. To analyse the
chemical composition of the foreground gas, all spectra were divided, in a
second step, into velocity intervals over which the CH+, 13CH+, and SH+ column
densities and abundances were derived. Results. SH+ is detected along all
observed lines of sight, with a velocity structure close to that of CH+ and
13CH+. The linewidth distributions of the CH+, SH+, and 13CH+ Gaussian
components are found to be similar. These distributions have the same mean
( ~ 4.2 km s-1) and standard deviation
(\sigma(\delta\u{psion}) ~ 1.5 km s-1). This mean value is also close to that
of the linewidth distribution of the CH+ visible transitions detected in the
solar neighbourhood. We show that the lack of absorption components narrower
than 2 km s-1 is not an artefact caused by noise: the CH+, 13CH+, and SH+ line
profiles are therefore statistically broader than those of most species
detected in absorption in diffuse interstellar gas (e. g. HCO+, CH, or CN). The
SH+/CH+ column density ratio observed in the components located away from the
Galactic centre spans two orders of magnitude and correlates with the CH+
abundance. Conversely, the ratio observed in the components close to the
Galactic centre varies over less than one order of magnitude with no apparent
correlation with the CH+ abundance. The observed dynamical and chemical
properties of SH+ and CH+ are proposed to trace the ubiquitous process of
turbulent dissipation, in shocks or shears, in the diffuse ISM and the specific
environment of the Galactic centre regions
- …
