9 research outputs found

    Processos de democracia direta: sim ou não? Os argumentos clássicos à luz da teoria e da prática

    Get PDF
    Regularmente surgem controvérsias sobre os processos de democracia direta, dos quais os mecanismos mais frequentes são a iniciativa popular, o plebiscito e o referendo. Por um lado, há autores que defendem a posição de que essas instituições tornam o jogo político mais lento, caro, confuso e ilegítimo; outros defendem a posição contrária e argumentam que processos de democracia direta são fundamentais para os cidadãos e a qualidade da democracia. O presente estudo analisa esse tema em torno de sete questões, baseadas em considerações teóricas e pesquisas empíricas: 1. A questão entre o minimalismo e o maximalismo democrático; 2. A concorrência entre maioria e minoria; 3. A concorrência entre as instituições representativas e os processos de democracia direta; 4. A questão da competência dos cidadãos; 5. A questão dos efeitos colaterais dos processos de democracia direta; 6. A questão do tamanho do eleitorado; 7. A questão dos custos dos processos de democracia direta. As sete questões são analisadas a partir de uma revisão bibliográfica que considera tanto fontes nacionais como internacionais. O estudo mostra que os processos de democracia direta podem ser um complemento para as instituições representativas em um sistema democrático. O bom desempenho dos plebiscitos, referendos e iniciativas populares depende tanto da regulamentação destes como também do desempenho das outras instituições políticas e da situação socioeconômica de um país. O estudo permite ampliar e aprofundar o debate sobre processos de democracia direta no Brasil

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    12 pags., 4 figs., 3 tabs.SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.Work at BMRZ is supported by the state of Hesse. Work in Covid19-NMR was supported by the Goethe Corona Funds, by the IWBEFRE-program 20007375 of state of Hesse, the DFG through CRC902: “Molecular Principles of RNA-based regulation.” and through infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611) and by European Union’s Horizon 2020 research and innovation program iNEXT-discovery under grant agreement No 871037. BY-COVID receives funding from the European Union’s Horizon Europe Research and Innovation Programme under grant agreement number 101046203. “INSPIRED” (MIS 5002550) project, implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011-285950—“SEE-DRUG” project (purchase of UPAT’s 700 MHz NMR equipment). The support of the CERM/CIRMMP center of Instruct-ERIC is gratefully acknowledged. This work has been funded in part by a grant of the Italian Ministry of University and Research (FISR2020IP_02112, ID-COVID) and by Fondazione CR Firenze. A.S. is supported by the Deutsche Forschungsgemeinschaft [SFB902/B16, SCHL2062/2-1] and the Johanna Quandt Young Academy at Goethe [2019/AS01]. M.H. and C.F. thank SFB902 and the Stiftung Polytechnische Gesellschaft for the Scholarship. L.L. work was supported by the French National Research Agency (ANR, NMR-SCoV2-ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), FINOVI and the IR-RMN-THC Fr3050 CNRS. Work at UConn Health was supported by grants from the US National Institutes of Health (R01 GM135592 to B.H., P41 GM111135 and R01 GM123249 to J.C.H.) and the US National Science Foundation (DBI 2030601 to J.C.H.). Latvian Council of Science Grant No. VPP-COVID-2020/1-0014. National Science Foundation EAGER MCB-2031269. This work was supported by the grant Krebsliga KFS-4903-08-2019 and SNF-311030_192646 to J.O. P.G. (ITMP) The EOSC Future project is co-funded by the European Union Horizon Programme call INFRAEOSC-03-2020—Grant Agreement Number 101017536. Open Access funding enabled and organized by Projekt DEALPeer reviewe

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form

    Structural dynamics of eukaryotic H/ACA RNPs from saccharomyces cerevisiae & structural dynamics of the Guanidine-II riboswitch from escherichia coli

    No full text
    Die vorliegende Dissertation mit dem Titel “Structural dynamics of eukaryotic H/ACA RNPs from Saccharomyces cerevisiae & Structural dynamics of the Guanidine-II riboswitch from Escherichia coli” besteht aus zwei Projekten. Das erste Projekt befasst sich mit den eukaryotischen H/ACA Ribonukleoproteinen (RNP) aus der Hefe. Diese können sequenzspezifisch in der RNA ein Uridin Nukleotid in das Rotationsisomer Pseudouridin (Ψ) umwandeln. Die H/ACA RNPs bestehen aus einer Leit-RNA und vier Proteinen, der katalytisch aktiven Pseudouridylase Cbf5, Nhp2, Gar1 und Nop10. Die Leit-RNA besteht in Eukaryoten konserviert aus zwei Haarnadelstrukturen, die von einem H-Box oder ACA-Box Sequenzmotiv gefolgt sind. In jeder dieser Haarnadeln befindet sich ein ungepaarter Bereich, die sogenannte Pseudouridylierungstasche, wo durch komplementäre Basenpaarung die Ziel-RNA gebunden wird. Fehlerhafte H/ACA RNPs können beim Menschen zu schweren Krankheiten wie verschiedenen Krebsarten oder dem Knochenmarksversagen Dyskeratosis congenita führen, aber sie bieten auch Möglichkeiten zum Einsatz als Therapiemethode. In dieser Arbeit wurde hauptsächlich der zweiteilige Aufbau der H/ACA RNPs untersucht. Dafür wurden zunächst die einzelnen Komponenten hergestellt werden. Cbf5, Nop10 und Gar1 wurden zusammen heterolog in E. coli exprimiert und gereinigt. Außerdem wurden mehrere Deletionsvarianten von Gar1 hergestellt. Zusätzlich wurde die Leit-RNA unmarkiert über T7 Transkription synthetisiert, sowie sechs verschiedene FRET-Konstrukte mit verschiedenen Markierungschemas der Fluorophore Cy3 und Cy5 über DNA-geschiente Ligation. Anschließend wurde über Größenausschlusschromatographie und radioaktiven Aktivitätsassays geprüft, dass sich die aktiven H/ACA RNPs in vitro aus den einzelnen Komponenten rekonstituieren lassen. In smFRET Experimenten wurden einzelne Haarnadelstrukturen mit dem zweiteiligen Komplexen verglichen. Dabei konnte gezeigt werden, dass die H3 Haarnadel durch die Anwesenheit von H5 dynamischer und heterogener wurde, während H5 überwiegend unbeeinflusst war. Außerdem konnte die dreidimensionale Orientierung der Haarnadelstrukturen in verschiedenen Assemblierungsschritten mittels smFRET untersucht werden. Hier deutete sich an, dass in Abwesenheit von Proteinen beide Haarnadeln eher entgegengesetzt stehen als in einer parallelen Konformation. Cbf5 scheint den Linker zwischen den Beiden auszustrecken bzw. zu orientieren und die Haarnadelstrukturen etwas gegeneinander zu neigen. Ein Zusammenspiel von Nhp2 und Gar1 war nötig um die oberen Bereiche der Haarnadeln zusammenzuziehen. Es konnte auch ein Modell für den vollen H/ACA RNP vorgeschlagen werden. Im kompletten Komplex könnte das Zusammenziehen der Haarnadelstrukturen durch Nhp2 und Gar1 mit dem Effekt von Cbf5 konkurrieren und könnte hauptsächlich den oberen Bereich von H3 betreffen. Zum Schluss wurde das Zusammenspiel von Gar1 und Nhp2 auf eine Abhängigkeit von den RGG Domänen von Gar1 hin untersucht. Hier besteht möglicherweise eine Hierarchie, die eine Kooperativität von den N- und C-terminalen Domänen benötigt. Das zweite Projekt befasst sich mit dem Guanidin-II Riboschalter aus E. coli. Der Riboschalter kann das toxische Molekül Guanidinium (Gdm+) spezifisch in seiner Aptamerdomäne binden und dadurch die Genexpression von Proteinen zur Detoxifizierung von Gdm+ aktivieren. Der Riboschalter besteht aus zwei Haarnadelstrukturen, mit einer Schleife, die aus der Sequenz ACGR besteht, wobei R ein Purin ist. In einem vorgeschlagenen Modell soll die Ribosomenbindestelle (Shine-Dalgarno Sequenz) in Abwesenheit von Ligand mit dem Linker komplementär Basenpaaren und so die Translation verhindern. Mit Ligand würde sich dann eine Schleifen-Schleifen Interaktion mit den beiden CG Basen ausbilden, wodurch die Anti-Shine-Dalgarno Sequenz nicht mehr zugänglich wäre. Bisherige Studien arbeiteten zumeist nur mit der Aptamerdomäne, den einzelnen Haarnadeln oder noch kleineren Elementen. In dieser Arbeit wurden die Strukturdynamiken von verschiedenen Längen, auch mit der Expressionsplatform, untersucht. Außerdem wurden verschiedene Mutationen analysiert und die Effekte auf den Riboschalter in seiner natürlichen Umgebung in E. coli. Zunächst mussten insgesamt 24 FRET-Konstrukte hergestellt werden, die sich in Länge, Markierungsschema und Mutationen unterschieden. Hierfür wurde DNA-geschiente Ligation verwendet. Dank der verschiedenen Fluorophorpositionen konnte ein konformationelles Modell für die Aptamerdomäne vorgeschlagen werden. In diesem Modell könnte in Abwesenheit von Ionen das Aptamer offen vorliegen. Durch Mg2+ würde sich bereits eine lockere Schleifen-Schleifen Interaktion ausbilden. Zusätzlich deuten die Ergebnisse auf eine neue Konformation hin, der stabilisierten Schleifen-Schleifen Interaktion, bei der der Linker zusätzlich mit den Haarnadelstrukturen interagiert, beispielswese mit den Purinen an der vierten Schleifenposition..

    Cooperative analysis of structural dynamics in rna-protein complexes by single-molecule förster resonance energy transfer spectroscopy

    No full text
    RNA-protein complexes (RNPs) are essential components in a variety of cellular processes, and oftentimes exhibit complex structures and show mechanisms that are highly dynamic in conformation and structure. However, biochemical and structural biology approaches are mostly not able to fully elucidate the structurally and especially conformationally dynamic and heterogeneous nature of these RNPs, to which end single molecule Förster resonance energy transfer (smFRET) spectroscopy can be harnessed to fill this gap. Here we summarize the advantages of strategic smFRET studies to investigate RNP dynamics, complemented by structural and biochemical data. Focusing on recent smFRET studies of three essential biological systems, we demonstrate that investigation of RNPs on a single molecule level can answer important functional questions that remained elusive with structural or biochemical approaches alone: The complex structural rearrangements throughout the splicing cycle, unwinding dynamics of the G-quadruplex (G4) helicase RHAU, and aspects in telomere maintenance regulation and synthesis

    Comprehensive Fragment Screening of the SARS-CoV-2 Proteome Explores Novel Chemical Space for Drug Development

    No full text
    SARS-CoV-2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti-virals. Within the international Covid19-NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR-detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure-based drug design against the SCoV2 proteome.ISSN:1433-7851ISSN:1521-3773ISSN:0570-083

    Comprehensive Fragment Screening of the SARS‐CoV‐2 Proteome Explores Novel Chemical Space for Drug Development

    Get PDF
    SARS‐CoV‐2 (SCoV2) and its variants of concern pose serious challenges to the public health. The variants increased challenges to vaccines, thus necessitating for development of new intervention strategies including anti‐virals. Within the international Covid19‐NMR consortium, we have identified binders targeting the RNA genome of SCoV2. We established protocols for the production and NMR characterization of more than 80 % of all SCoV2 proteins. Here, we performed an NMR screening using a fragment library for binding to 25 SCoV2 proteins and identified hits also against previously unexplored SCoV2 proteins. Computational mapping was used to predict binding sites and identify functional moieties (chemotypes) of the ligands occupying these pockets. Striking consensus was observed between NMR‐detected binding sites of the main protease and the computational procedure. Our investigation provides novel structural and chemical space for structure‐based drug design against the SCoV2 proteome

    Hypothalamic Disorders During Ovulation, Pregnancy, and Lactation

    No full text

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form.This work was supported by Goethe University (Corona funds), the DFG-funded CRC: “Molecular Principles of RNA-Based Regulation,” DFG infrastructure funds (project numbers: 277478796, 277479031, 392682309, 452632086, 70653611), the state of Hesse (BMRZ), the Fondazione CR Firenze (CERM), and the IWB-EFRE-program 20007375. This project has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 871037. AS is supported by DFG Grant SCHL 2062/2-1 and by the JQYA at Goethe through project number 2019/AS01. Work in the lab of KV was supported by a CoRE grant from the University of New Hampshire. The FLI is a member of the Leibniz Association (WGL) and financially supported by the Federal Government of Germany and the State of Thuringia. Work in the lab of RM was supported by NIH (2R01EY021514) and NSF (DMR-2002837). BN-B was supported by theNSF GRFP.MCwas supported byNIH (R25 GM055246 MBRS IMSD), and MS-P was supported by the HHMI Gilliam Fellowship. Work in the labs of KJ and KT was supported by Latvian Council of Science Grant No. VPP-COVID 2020/1-0014. Work in the UPAT’s lab was supported by the INSPIRED (MIS 5002550) project, which is implemented under the Action “Reinforcement of the Research and Innovation Infrastructure,” funded by the Operational Program “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and cofinanced by Greece and the EU (European Regional Development Fund) and the FP7 REGPOT CT-2011- 285950–“SEE-DRUG” project (purchase of UPAT’s 700MHz NMR equipment). Work in the CM-G lab was supported by the Helmholtz society. Work in the lab of ABö was supported by the CNRS, the French National Research Agency (ANR, NMRSCoV2- ORF8), the Fondation de la Recherche Médicale (FRM, NMR-SCoV2-ORF8), and the IR-RMN-THC Fr3050 CNRS. Work in the lab of BM was supported by the Swiss National Science Foundation (Grant number 200020_188711), the Günthard Stiftung für Physikalische Chemie, and the ETH Zurich. Work in the labs of ABö and BM was supported by a common grant from SNF (grant 31CA30_196256). This work was supported by the ETHZurich, the grant ETH40 18 1, and the grant Krebsliga KFS 4903 08 2019. Work in the lab of the IBS Grenoble was supported by the Agence Nationale de Recherche (France) RA-COVID SARS2NUCLEOPROTEIN and European Research Council Advanced Grant DynamicAssemblies. Work in the CA lab was supported by Patto per il Sud della Regione Siciliana–CheMISt grant (CUP G77B17000110001). Part of this work used the platforms of the Grenoble Instruct-ERIC center (ISBG; UMS 3518 CNRS-CEA-UGA-EMBL) within the Grenoble Partnership for Structural Biology (PSB), supported by FRISBI (ANR-10-INBS-05-02) and GRAL, financed within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE- 0003). Work at the UW-Madison was supported by grant numbers NSF MCB2031269 and NIH/NIAID AI123498. MM is a Ramón y Cajal Fellow of the Spanish AEI-Ministry of Science and Innovation (RYC2019-026574-I), and a “La Caixa” Foundation (ID 100010434) Junior Leader Fellow (LCR/BQ/PR19/11700003). Funded by project COV20/00764 fromthe Carlos III Institute of Health and the SpanishMinistry of Science and Innovation to MMand DVL. VDJ was supported by the Boehringer Ingelheim Fonds. Part of this work used the resources of the Italian Center of Instruct-ERIC at the CERM/ CIRMMP infrastructure, supported by the Italian Ministry for University and Research (FOE funding). CF was supported by the Stiftung Polytechnische Gesellschaft. Work in the lab of JH was supported by NSF (RAPID 2030601) and NIH (R01GM123249).Peer reviewe
    corecore