36 research outputs found

    The Lombard Effect in Spontaneous Dialog Speech

    Get PDF

    Methods for broad-scale plant phenology assessments using citizen scientists’ photographs

    Get PDF
    © 2020 Barve et al. Applications in Plant Sciences is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America Premise: Citizen science platforms for sharing photographed digital vouchers, such as iNaturalist, are a promising source of phenology data, but methods and best practices for use have not been developed. Here we introduce methods using Yucca flowering phenology as a case study, because drivers of Yucca phenology are not well understood despite the need to synchronize flowering with obligate pollinators. There is also evidence of recent anomalous winter flowering events, but with unknown spatiotemporal extents. Methods: We collaboratively developed a rigorous, consensus-based approach for annotating and sharing whole plant and flower presence data from iNaturalist and applied it to Yucca records. We compared spatiotemporal flowering coverage from our annotations with other broad-scale monitoring networks (e.g., the National Phenology Network) in order to determine the unique value of photograph-based citizen science resources. Results: Annotations from iNaturalist were uniquely able to delineate extents of unusual flowering events in Yucca. These events, which occurred in two different regions of the Desert Southwest, did not appear to disrupt the typical-period flowering. Discussion: Our work demonstrates that best practice approaches to scoring iNaturalist records provide fine-scale delimitation of phenological events. This approach can be applied to other plant groups to better understand how phenology responds to changing climate

    Filterability of staphylococcal species through membrane filters following application of stressors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Passage of bacterial cells through filter pores has been reported for a number of bacterial species. In this investigation, we tested the filterability of staphylococcal cultures that were exposed to several environmental stress conditions by passing them through 0.22 and 0.45 μm sterile filters, which are industry standards.</p> <p>Findings</p> <p>Results showed repeated passage of viable staphylococcal cells through both pore sizes, although more passage was seen through the 0.45 μm pore size. Of the three staphylococcal species, <it>S. lugdunensis </it>showed the best passage at relatively higher numbers regardless of the treatment, while both <it>S. aureus </it>and <it>S. epidermidis </it>showed limited passage or complete inhibition.</p> <p>Conclusion</p> <p>The data showed that staphylococcal bacteria were capable of passing through sterile filters in a viable state. There was better passage through 0.45 μm sterile filters than through the 0.22 μm sterile filters. Application of a stress condition did not appear to enhance filterability of these bacterial cultures.</p

    Truncating SRCAP variants outside the Floating-Harbor syndrome locus cause a distinct neurodevelopmental disorder with a specific DNA methylation signature

    Get PDF
    Truncating variants in exons 33 and 34 of the SNF2-related CREBBP activator protein (SRCAP) gene cause the neurodevelopmental disorder (NDD) Floating-Harbor syndrome (FLHS), characterized by short stature, speech delay, and facial dysmorphism. Here, we present a cohort of 33 individuals with clinical features distinct from FLHS and truncating (mostly de novo) SRCAP variants either proximal (n = 28) or distal (n = 5) to the FLHS locus. Detailed clinical characterization of the proximal SRCAP individuals identified shared characteristics: developmental delay with or without intellectual disability, behavioral and psychiatric problems, non-specific facial features, musculoskeletal issues, and hypotonia. Because FLHS is known to be associated with a unique set of DNA methylation (DNAm) changes in blood, a DNAm signature, we investigated whether there was a distinct signature associated with our affected individuals. A machine-learning model, based on the FLHS DNAm signature, negatively classified all our tested subjects. Comparing proximal variants with typically developing controls, we identified a DNAm signature distinct from the FLHS signature. Based on the DNAm and clinical data, we refer to the condition as "non-FLHS SRCAP-related NDD.'' All five distal variants classified negatively using the FLHS DNAm model while two classified positively using the proximal model. This suggests divergent pathogenicity of these variants, though clinically the distal group presented with NDD, similar to the proximal SRCAP group. In summary, for SRCAP, there is a clear relationship between variant location, DNAm profile, and clinical phenotype. These results highlight the power of combined epigenetic, molecular, and clinical studies to identify and characterize genotype-epigenotype-phenotype correlations

    A database solution for the quantitative characterisation and comparison of deep-marine siliciclastic depositional systems

    Get PDF
    In sedimentological investigations, the ability to conduct comparative analyses between deep-marine depositional systems is hindered by the wide variety in methods of data collection, scales of observation, resolution, classification approaches and terminology. A relational database, the Deep-Marine Architecture Knowledge Store (DMAKS), has been developed to facilitate such analyses, through the integration of deep-marine sedimentological data collated to a common standard. DMAKS hosts data on siliciclastic deep-marine system boundary conditions, and on architectural and facies properties, including spatial, temporal and hierarchical relationships between units at multiple scales. DMAKS has been devised to include original and literature-derived data from studies of the modern sea-floor, and from ancient successions studied in the sub-surface and in outcrop. The database can be used as a research tool in both pure and applied science, allowing the quantitative characterisation of deep-marine systems. The ability to synthesise data from several case studies and to filter outputs on multiple parameters that describe the depositional systems and their controlling factors enables evaluation of the degree to which certain controls affect sedimentary architectures, thereby testing the validity of existing models. In applied contexts, DMAKS aids the selection and application of geological analogues to hydrocarbon reservoirs, and permits the development of predictive models of reservoir characteristics that account for geological uncertainty. To demonstrate the breadth of research applications, example outputs are presented on: (i) the characterisation of channel geometries, (ii) the hierarchical organisation of channelised and terminal deposits, (iii) temporal trends in the deposition of terminal lobes, (iv) scaling relationships between adjacent channel and levee architectural elements, (v) quantification of the likely occurrence of elements of different types as a function of the lateral distance away from an element of known type, (vi) proportions and transition statistics of facies in elements and beds, (vii) variability in net-to-gross ratios among element types

    Relative Basicities of Some Endo

    No full text

    A propos du Dindon sauvage dans le Nord-Ouest du Mexique

    No full text

    Dominican University of California\u27s Della Robbia Inspired Plaques

    No full text
    Dominican University of California has a rich history rooted in Catholicism. Although the university, originally known as Dominican College of San Rafael, disaffiliated from the Catholic Church in 1971 when it became co-educational, the heritage of the founding mothers has persisted throughout the years. Students and faculty are greeted with beautiful biblical depictions, often found in sculpture form, decorating some of the campus\u27 high traffic buildings. These works of art are styled after the traditional Renaissance style of “Della Robbias.” These replicas have been a part of the campus community for decades.https://scholar.dominican.edu/visual-studies-websites/1000/thumbnail.jp
    corecore