34 research outputs found

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF
    Anemia is a globally widespread condition in women and is associated with reduced economic productivity and increased mortality worldwide. Here we map annual 2000–2018 geospatial estimates of anemia prevalence in women of reproductive age (15–49 years) across 82 low- and middle-income countries (LMICs), stratify anemia by severity and aggregate results to policy-relevant administrative and national levels. Additionally, we provide subnational disparity analyses to provide a comprehensive overview of anemia prevalence inequalities within these countries and predict progress toward the World Health Organization’s Global Nutrition Target (WHO GNT) to reduce anemia by half by 2030. Our results demonstrate widespread moderate improvements in overall anemia prevalence but identify only three LMICs with a high probability of achieving the WHO GNT by 2030 at a national scale, and no LMIC is expected to achieve the target in all their subnational administrative units. Our maps show where large within-country disparities occur, as well as areas likely to fall short of the WHO GNT, offering precision public health tools so that adequate resource allocation and subsequent interventions can be targeted to the most vulnerable populations.Peer reviewe

    Anemia prevalence in women of reproductive age in low- and middle-income countries between 2000 and 2018

    Get PDF

    Fungal Biodiversity

    No full text

    Disease control and its selection for damaging plant virus strains in vegetatively propagated staple food crops; a theoretical assessment

    No full text
    Viral diseases are a key constraint in the production of staple food crops in lesser developed countries. New and improved disease control methods are developed and implemented without consideration of the selective pressure they impose on the virus. In this paper, we analyse the evolution of within-plant virus titre as a response to the implementation of a range of disease control methods. We show that the development of new and improved disease control methods for viral diseases of vegetatively propagated staple food crops ought to take the evolutionary responses of the virus into consideration. Not doing so leads to a risk of failure, which can result in considerable economic losses and increased poverty. Specifically in vitro propagation, diagnostics and breeding methods carry a risk of failure due to the selection for virus strains that build up a high within-plant virus titre. For vegetatively propagated crops, sanitation by roguing has a low risk of failure owing to its combination of selecting for low virus titre strains as well as increasing healthy crop density

    Ecology and evolution of cancer

    No full text
    While it is widely acknowledged that intratumor heterogeneity is mostly generated by genomic instability, we propose that genomic instability is only part of a proximate mechanism that maintains intratumor heterogeneity through oncogenic selection. Within tissues and organs, malignant cells achieve greater success by cooperating in the process of tumor construction, rather than by just being in isolation. This process would involve the selection of a bet-hedging strategy during oncogenesis to generate the diversity of cell components needed to build, de novo, such an intricate cooperative system. This process requires sufficient time to generate the diversity of relevant clones, which may explain why solid tumors tend to occur late in life. In liquid environments, opportunities for structurally complex tumors are more limited. This may help explain why cancer cells from liquid tumors generally do not aggregate, are on average less heterogeneous (i.e., low selection for bet-hedging), and can be detrimental early in life (e.g., leukemia). In an evolutionary context, this suggests that the bet-hedging strategy is not only a universal risk-diversification strategy that evolves in the populations which face uncertain future and/or environment, it is also selected when there is a need of building, de novo, cooperative and complex systems

    Phylogeny and ecology of the ubiquitous saprobe Cladosporium sphaerospermum, with descriptions of seven new species from hypersaline environments

    No full text
    Saprobic Cladosporium isolates morphologically similar to C. sphaerospermum are phylogenetically analysed on the basis of DNA sequences of the ribosomal RNA gene cluster, including the internal transcribed spacer regions ITS1 and ITS2, the 5.8S rDNA (ITS) and the small subunit (SSU) rDNA as well as ß-tubulin and actin gene introns and exons. Most of the C. sphaerospermum-like species show halotolerance as a recurrent feature. Cladosporium sphaerospermum, which is characterised by almost globose conidia, is redefined on the basis of its ex-neotype culture. Cladosporium dominicanum, C. psychrotolerans, C. velox, C. spinulosum and C. halotolerans, all with globoid conidia, are newly described on the basis of phylogenetic analyses and cryptic morphological and physiological characters. Cladosporium halotolerans was isolated from hypersaline water and bathrooms and detected once on dolphin skin. Cladosporium dominicanum and C. velox were isolated from plant material and hypersaline water. Cladosporium psychrotolerans, which grows well at 4 °C but not at 30 °C, and C. spinulosum, having conspicuously ornamented conidia with long digitate projections, are currently only known from hypersaline water. We also newly describe C. salinae from hypersaline water and C. fusiforme from hypersaline water and animal feed. Both species have ovoid to ellipsoid conidia and are therefore reminiscent of C. herbarum. Cladosporium langeronii (= Hormodendrum langeronii) previously described as a pathogen on human skin, is halotolerant but has not yet been recorded from hypersaline environments
    corecore