10 research outputs found

    The Replication Database:Documenting the Replicability of Psychological Science

    Get PDF
    In psychological science, replicability—repeating a study with a new sample achieving consistent results (Parsons et al., 2022)—is critical for affirming the validity of scientific findings. Despite its importance, replication efforts are few and far between in psychological science with many attempts failing to corroborate past findings. This scarcity, compounded by the difficulty in accessing replication data, jeopardizes the efficient allocation of research resources and impedes scientific advancement. Addressing this crucial gap, we present the Replication Database (https://forrt-replications.shinyapps.io/fred_explorer), a novel platform hosting 1,239 original findings paired with replication findings. The infrastructure of this database allows researchers to submit, access, and engage with replication findings. The database makes replications visible, easily findable via a graphical user interface, and tracks replication rates across various factors, such as publication year or journal. This will facilitate future efforts to evaluate the robustness of psychological research

    Synthesis of Ethyl 2-chloro-2-methylacetoacetate: A Putative Substrate for Amine Dehydrogenase Enzymes

    No full text
    This presentation was given at the Armstrong Student Scholarship Symposium

    Substrate Investigations for Amine Dehydrogenase

    No full text
    This presentation was given at the Center of Pharmaceutical Development

    A community-sourced glossary of open scholarship terms

    No full text
    Open scholarship has transformed research, and introduced a host of new terms in the lexicon of researchers. The ‘Framework for Open and Reproducible Research Teaching’ (FORRT) community presents a crowdsourced glossary of open scholarship terms to facilitate education and effective communication between experts and newcomers

    A community-sourced glossary of open scholarship terms

    Get PDF
    Open scholarship has transformed research, and introduced a host of new terms in the lexicon of researchers. The ‘Framework for Open and Reproducible Research Teaching’ (FORRT) community presents a crowdsourced glossary of open scholarship terms to facilitate education and effective communication between experts and newcomers

    A community-sourced glossary of open scholarship terms.

    No full text
    From PubMed via Jisc Publications RouterPublication status: aheadofprin

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore