209 research outputs found

    Bright crater outflows: Possible emplacement mechanisms

    Get PDF
    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree

    Bootstrapping a Terrorist Network

    Get PDF

    Aging and Holography

    Full text link
    Aging phenomena are examples of `non-equilibrium criticality' and can be exemplified by systems with Galilean and scaling symmetries but no time translation invariance. We realize aging holographically using a deformation of a non-relativistic version of gauge/gravity duality. Correlation functions of scalar operators are computed using holographic real-time techniques, and agree with field theory expectations. At least in this setup, general aging phenomena are reproduced holographically by complexifying the bulk space-time geometry, even in Lorentzian signature.Comment: 1 pdf figur

    Resolved Magnetic Field Mapping of a Molecular Cloud Using GPIPS

    Full text link
    We present the first resolved map of plane-of-sky magnetic field strength for a quiescent molecular cloud. GRSMC 45.60+0.30 subtends 40 x 10 pc at a distance of 1.88 kpc, masses 16,000 M_sun, and exhibits no star formation. Near-infrared background starlight polarizations were obtained for the Galactic Plane Infrared Polarization Survey using the 1.8 m Perkins telescope and the Mimir instrument. The cloud area of 0.78 deg2 contains 2684 significant starlight polarizations for Two Micron All Sky Survey matched stars brighter than 12.5 mag in the H band. Polarizations are generally aligned with the cloud's major axis, showing an average position angle dispersion of 15 \pm 2{\deg} and polarization of 1.8 \pm 0.6%. The polarizations were combined with Galactic Ring Survey 13CO spectroscopy and the Chandrasekhar-Fermi method to estimate plane-of-sky magnetic field strengths, with an angular resolution of 100 arcsec. The average plane-of-sky magnetic field strength across the cloud is 5.40 \pm 0.04 {\mu}G. The magnetic field strength map exhibits seven enhancements or "magnetic cores." These cores show an average magnetic field strength of 8.3 \pm 0.9 {\mu}G, radius of 1.2 \pm 0.2 pc, intercore spacing of 5.7 \pm 0.9 pc, and exclusively subcritical mass-to-flux ratios, implying their magnetic fields continue to suppress star formation. The magnetic field strength shows a power-law dependence on gas volume density, with slope 0.75 \pm 0.02 for n_{H_2} >=10 cm-3. This power-law index is identical to those in studies at higher densities, but disagrees with predictions for the densities probed here.Comment: 11 pages, 15 figures, published in ApJ (2012, 755, 130

    Roles of fibrin α- and γ-chain specific cross-linking by FXIIIa in fibrin structure and function

    Get PDF
    Factor XIII is responsible for the cross-linking of fibrin γ-chains in the early stages of clot formation, whilst α-chain cross-linking occurs at a slower rate. Although γ- and α-chain cross-linking was previously shown to contribute to clot stiffness, the role of cross-linking of both chains in determining clot structure is currently unknown. Therefore, the aim of this study was to determine the role of individual α- and γ-chain cross-linking during clot formation, and its effects on clot structure. We made use of a recombinant fibrinogen (γQ398N/Q399N/K406R), which does not allow for γ-chain cross-linking. In the absence of cross-linking, intact D-D interface was shown to play a potential role in fibre appearance time, clot stiffness and elasticity. Cross-linking of the fibrin α-chain played a role in the thickening of the fibrin fibres over time, and decreased lysis rate in the absence of α2-antiplasmin. We also showed that α-chain cross-linking played a role in the timing of fibre appearance, straightening fibres, increasing clot stiffness and reducing clot deformation. Cross-linking of the γ-chain played a role in fibrin fibre appearance time and fibre density. Our results show that α- and γ-chain cross-linking play independent and specific roles in fibrin clot formation and structure

    Intermittent dislocation flow in viscoplastic deformation

    Full text link
    The viscoplastic deformation (creep) of crystalline materials under constant stress involves the motion of a large number of interacting dislocations. Analytical methods and sophisticated `dislocation-dynamics' simulations have proved very effective in the study of dislocation patterning, and have led to macroscopic constitutive laws of plastic deformation. Yet, a statistical analysis of the dynamics of an assembly of interacting dislocations has not hitherto been performed. Here we report acoustic emission measurements on stressed ice single crystals, the results of which indicate that dislocations move in a scale-free intermittent fashion. This result is confirmed by numerical simulations of a model of interacting dislocations that successfully reproduces the main features of the experiment. We find that dislocations generate a slowly evolving configuration landscape which coexists with rapid collective rearrangements. These rearrangements involve a comparatively small fraction of the dislocations and lead to an intermittent behavior of the net plastic response. This basic dynamical picture appears to be a generic feature in the deformation of many other materials. Moreover, it should provide a framework for discussing fundamental aspects of plasticity, that goes beyond standard mean-field approaches that see plastic deformation as a smooth laminar flow

    Effective viscosity from cloud-cloud collisions in three-dimensional global SPH simulations

    Get PDF
    Analytic estimates of the viscous time-scale due to cloud-cloud collisions have been as high as thousands of Gyr. Consequently, cloud collisions are widely ignored as a source of viscosity in galactic disks. However, capturing the hydrodynamics of discs in simple analytic models is a challenge, both because of the wide dynamic range and importance of 2D and 3D effects. To test the validity of analytic models we present estimates for the viscous time-scale that are measured from three dimensional SPH simulations of disc formation and evolution. We have deliberately removed uncertainties associated with star-formation and feedback thereby enabling us to place lower bounds on the time-scale for this process. We also contrast collapse simulations with results from simulations of initially stable discs and examine the impact of numerical parameters and assumptions on our work, to constrain possible systematics in our estimates. We find that cloud-collision viscous time-scales are in the range of 0.6-16 Gyr, considerably shorter than previously estimated. This large discrepency can be understood in terms of how the efficiency of collisions is included in the analytical estimates. We find that the viscous time-scale only depends weakly on the number of clouds formed, and so while the viscous time-scale will increase with increasing resolution, this effect is too weak to alter our conclusions.Comment: 11 pages, accepted to MNRA

    Chimpanzee Malaria Parasites Related to Plasmodium ovale in Africa

    Get PDF
    Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes) and gorillas (Gorilla gorilla) from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes

    Understanding mechanobiology in cultured endothelium: A review of the orbital shaker method

    Get PDF
    A striking feature of atherosclerosis is its highly non-uniform distribution within the arterial tree. This has been attributed to variation in the haemodynamic wall shear stress (WSS) experienced by endothelial cells, but the WSS characteristics that are important and the mechanisms by which they lead to disease remain subjects of intensive investigation despite decades of research. In vivo evidence suggests that multidirectional WSS is highly atherogenic. This possibility is increasingly being studied by culturing endothelial cells in wells that are swirled on an orbital shaker. The method is simple and cost effective, has high throughput and permits chronic exposure, but interpretation of the results can be difficult because the fluid mechanics are complex; hitherto, their description has largely been restricted to the engineering literature. Here we review the findings of such studies, which indicate that putatively atherogenic flow characteristics occur at the centre of the well whilst atheroprotective ones occur towards the edge, and we describe simple mathematical methods for choosing experimental variables that avoid resonance, wave breaking and uncovering of the cells. We additionally summarise a large number of studies showing that endothelium cultured at the centre of the well expresses more pro-inflammatory and fewer homeostatic genes, has higher permeability, proliferation, apoptosis and senescence, and shows more endothelial-to-mesenchymal transition than endothelium at the edge. This simple method, when correctly interpreted, has the potential to greatly increase our understanding of the homeostatic and pathogenic mechanobiology of endothelial cells and may help identify new therapeutic targets in vascular disease
    • …
    corecore