294 research outputs found

    Patterns of long‐term vegetation change vary between different types of semi‐natural grasslands in Western and Central Europe

    Get PDF
    Questions: Has plant species richness in semi‐natural grasslands changed over recent decades? Do the temporal trends of habitat specialists differ from those of habitat generalists? Has there been a homogenization of the grassland vegetation? Location: Different regions in Germany and the UK. Methods: We conducted a formal meta‐analysis of re‐survey vegetation studies of semi‐natural grasslands. In total, 23 data sets were compiled, spanning up to 75 years between the surveys, including 13 data sets from wet grasslands, six from dry grasslands and four from other grassland types. Edaphic conditions were assessed using mean Ellenberg indicator values for soil moisture, nitrogen and pH. Changes in species richness and environmental variables were evaluated using response ratios. Results: In most wet grasslands, total species richness declined over time, while habitat specialists almost completely vanished. The number of species losses increased with increasing time between the surveys and were associated with a strong decrease in soil moisture and higher soil nutrient contents. Wet grasslands in nature reserves showed no such changes or even opposite trends. In dry grasslands and other grassland types, total species richness did not consistently change, but the number or proportions of habitat specialists declined. There were also considerable changes in species composition, especially in wet grasslands that often have been converted into intensively managed, highly productive meadows or pastures. We did not find a general homogenization of the vegetation in any of the grassland types. Conclusions: The results document the widespread deterioration of semi‐natural grasslands, especially of those types that can easily be transformed to high production grasslands. The main causes for the loss of grassland specialists are changed management in combination with increased fertilization and nitrogen deposition. Dry grasslands are most resistant to change, but also show a long‐term trend towards an increase in more mesotrophic species

    The whole and its parts : why and how to disentangle plant communities and synusiae in vegetation classification

    Get PDF
    Most plant communities consist of different structural and ecological subsets, ranging from cryptogams to different tree layers. The completeness and approach with which these subsets are sampled have implications for vegetation classification. Non‐vascular plants are often omitted or sometimes treated separately, referring to their assemblages as “synusiae” (e.g. epiphytes on bark, saxicolous species on rocks). The distinction of complete plant communities (phytocoenoses or holocoenoses) from their parts (synusiae or merocoenoses) is crucial to avoid logical problems and inconsistencies of the resulting classification systems. We here describe theoretical differences between the phytocoenosis as a whole and its parts, and outline consequences of this distinction for practise and terminology in vegetation classification. To implement a clearer separation, we call for modifications of the International Code of Phytosociological Nomenclature and the EuroVegChecklist. We believe that these steps will make vegetation classification systems better applicable and raise the recognition of the importance of non‐vascular plants in the vegetation as well as their interplay with vascular plants

    Plant communities of Italy. The vegetation prodrome

    Get PDF
    The Vegetation Prodrome of Italy was promoted in 2012 by the Italian "Ministry of Environment, Land and Sea Protection", in collaboration with the "Italian Society of Botany", to provide a comprehensive and systematic catalogue and description of Italian plant communities. The Prodrome that is presented in this paper is the first full organic synthesis of the vegetation of Italy at the alliance syntaxonomic level. It fulfils several needs, the main one being a unified and comprehensive national framework that may make an important contribution to the definition of the European Vegetation Prodrome. Syntaxonomy, as well as taxonomy, is sometimes based on considerations that may in part diverge: several authors tend to favour models that are divisive or aggregative to a greater or lesser extent in terms of flora, biogeography and ecology. These different points of view stimulate the scientific debate and allow the adoption of a framework that is more widely supported. The Prodrome includes 75 classes, 2 subclasses, 175 orders, 6 suborders and 393 alliances. The classes were grouped into nine broad categories according to structural, physiognomic and synecological elements rather than to syntaxonomic criteria. The rank, full valid name, any synonymies and incorrect names are provided for each syntaxon. The short declaration highlights the physiognomy, synecology, syndynamics and distribution of the plant communities that belong to the syntaxon. The Prodrome of the Italian Vegetation is linked to the European Strategy for Biodiversity, the European Habitats Directive and the European Working Groups related to the ecosystems and their services. In addition to basic applications, the Prodrome can be used as a framework for scientific research related to the investigation of the relationships between plant communities and the environmental factors that influence their composition and distribution

    Climate change in the Baltic Sea region : a summary

    Get PDF
    Based on the Baltic Earth Assessment Reports of this thematic issue in Earth System Dynamics and recent peer-reviewed literature, current knowledge of the effects of global warming on past and future changes in climate of the Baltic Sea region is summarised and assessed. The study is an update of the Second Assessment of Climate Change (BACC II) published in 2015 and focuses on the atmosphere, land, cryosphere, ocean, sediments, and the terrestrial and marine biosphere. Based on the summaries of the recent knowledge gained in palaeo-, historical, and future regional climate research, we find that the main conclusions from earlier assessments still remain valid. However, new long-term, homogenous observational records, for example, for Scandinavian glacier inventories, sea-level-driven saltwater inflows, so-called Major Baltic Inflows, and phytoplankton species distribution, and new scenario simulations with improved models, for example, for glaciers, lake ice, and marine food web, have become available. In many cases, uncertainties can now be better estimated than before because more models were included in the ensembles, especially for the Baltic Sea. With the help of coupled models, feedbacks between several components of the Earth system have been studied, and multiple driver studies were performed, e.g. projections of the food web that include fisheries, eutrophication, and climate change. New datasets and projections have led to a revised understanding of changes in some variables such as salinity. Furthermore, it has become evident that natural variability, in particular for the ocean on multidecadal timescales, is greater than previously estimated, challenging our ability to detect observed and projected changes in climate. In this context, the first palaeoclimate simulations regionalised for the Baltic Sea region are instructive. Hence, estimated uncertainties for the projections of many variables increased. In addition to the well-known influence of the North Atlantic Oscillation, it was found that also other low-frequency modes of internal variability, such as the Atlantic Multidecadal Variability, have profound effects on the climate of the Baltic Sea region. Challenges were also identified, such as the systematic discrepancy between future cloudiness trends in global and regional models and the difficulty of confidently attributing large observed changes in marine ecosystems to climate change. Finally, we compare our results with other coastal sea assessments, such as the North Sea Region Climate Change Assessment (NOSCCA), and find that the effects of climate change on the Baltic Sea differ from those on the North Sea, since Baltic Sea oceanography and ecosystems are very different from other coastal seas such as the North Sea. While the North Sea dynamics are dominated by tides, the Baltic Sea is characterised by brackish water, a perennial vertical stratification in the southern subbasins, and a seasonal sea ice cover in the northern subbasins.Peer reviewe

    Ecological Indicator Values of Europe (EIVE) 1.0: a powerful open-access tool for vegetation scientists

    Get PDF
    Background: Ecological indicator values (EIVs) have a long tradition in vegetation ecological research in Europe. EIVs characterise the ecological optimum of species along major environmental gradients using ordinal scales. Calculating mean indicator values per plot is an effective way of bioindication. Following first systems in Russia and Central Europe, about two dozen EIV systems have been published for various parts of Europe. Aims: As there was no EIV system available at European scale that could be used for broad-scale analyses, e.g. in the context of the European Vegetation Archive (EVA), we develop such a system for the first time for the vascular plants of Europe. Location: Europe. Methods: We compiled all national and major regional EIV systems and harmonized their plant nomenclature with a newly developed contemporary European taxonomic backbone (EuroSL 1.0). Using regression, we rescaled the individual EIV systems for the main parameters to continent-wide quasi-metric scales, ranging from 1 to 99. The data from each individual system were then translated into a probability curve approximated with a normal distribution, weighed with the logarithm of the area represented and summed up across the systems. From the European density curve we extracted then a mean and a variance, which characterise the distribution of this species along this particular ecological gradient. Results and conclusions: Our consensus approach of integrating the expert knowledge of all existing EIV systems allowed deriving the first consistent description of the ecological behaviour for a significant part of the European vascular flora. The resulting Ecological Indicator Values of Europe (EIVE) 1.0 will be published open access to allow bioindication beyond country borders. Future releases of EIVE might contain more parameters, non-vascular plants and regionalisation or could be re-adjusted and extended to hitherto non-covered species through co-occurrence data from EVA

    Structure and diversity trends at Fagus timberline in central Italy

    Get PDF
    Structure and diversity trends (ÎČ-diversity and species richness) across the Fagus sylvatica timberline in the central Apennines were investigated. Twenty-three belt transects were laid out across the upper forest line in the Simbruini Mountains. Number of species, plant cover, and height of different layers were recorded in each quadrat. The moving split-window method was used to detect ecological discontinuities across beech timberlines. We show how ÎČ-diversity changes along timberlines and we put forward some hypotheses about the possible dynamics of these transitions. Fourmodels resulted from the analysis of ÎČ-diversity trends: two ÎČ-diversity peaks indicated a transition where shrubs, mainly Juniperus communis ssp. alpina, (two high peaks) or beech scrub (two small peaks) formed a mantle that could allow forest expansion. One high ÎČ-diversity peak referred to an anthropo-zoogenic boundary maintained by disturbance, without the presence of a mantle. A little peak indicated a gradual transition at the upper potential timberline limit where beech forest had lost its typical floristical composition and structural characteristics
    • 

    corecore