8 research outputs found

    A method for independent component graph analysis of resting-state fMRI

    Get PDF
    Introduction: Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Objective: Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. Methods: First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network neuronal properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Results: Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. Conclusions: This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength

    Role of Dimensionality in Predicting the Spontaneous Behavior of the Brain Using the Classical Ising Model and the Ising Model Implemented on a Structural Connectome

    Get PDF
    © Pubuditha M. Abeyasinghe et al. 2018. There is accumulating evidence that spontaneous fluctuations of the brain are sustained by a structural architecture of axonal fiber bundles. Various models have been used to investigate this structure-function relationship. In this work, we implemented the Ising model using the number of fibers between each pair of brain regions as input. The output of the Ising model simulations on a structural connectome was then compared with empirical functional connectivity data. A simpler two-dimensional classical Ising model was used as the baseline model for comparison purpose. Thermodynamic properties, such as the magnetic susceptibility and the specific heat, illustrated a phase transition from an ordered phase to a disordered phase at the critical temperature. Despite the differences between the two models, the lattice Ising model and the Ising model implemented on a structural connectome (the generalized Ising model) exhibited similar patterns of global properties. To study the behavior of the generalized Ising model around criticality, calculation of the dimensionality and critical exponents was performed for the first time, by introducing a new concept of distance based on structural connectivity. Same value inside the fitting error was found for the dimensionality in both models suggesting similar behavior of the models around criticality

    Characterization of near death experiences using text mining analyses: A preliminary study

    Get PDF
    The notion that death represents a passing to an afterlife, where we are reunited with loved ones and live eternally in a utopian paradise, is common in the reports of people who have encountered a “Near-Death Experience” (NDE). NDEs are thoroughly portrayed by the media but empirical studies are rather recent. The definition of the phenomenon as well as the identification of NDE experiencers is still a matter of debate. To date, NDEs’ identification and description in studies have mostly derived from answered items in questionnaires. However, questionnaires’ content could be restricting and subject to personal interpretation. We believe that in addition to their use, user-independent statistical text examination of freely expressed NDEs narratives is of prior importance to help capture the phenomenology of such a subjective and complex phenomenon. Towards that aim, we included 158 participants with a firsthand retrospective narrative of their self-reported NDE that we analyzed using an automated text-mining method. The output revealed the top words expressed by experiencers. In a second step, a hierarchical clustering analysis was conducted to visualize the relationships between these words. It revealed three main clusters of features: visual perceptions, emotions and spatial components. We believe the user-independent and data-driven text mining approach used in this study is promising by contributing to the building a rigorous description and definition of NDEs

    Multimodal neuroimaging approach to variability of functional connectivity in disorders of consciousness: A PET/MRI pilot study

    Get PDF
    Behavioral assessments could not suffice to provide accurate diagnostic information in individuals with disorders of consciousness (DoC). Multimodal neuroimaging markers have been developed to support clinical assessments of these patients. Here we present findings obtained by hybrid fludeoxyglucose (FDG-)PET/MR imaging in three severely brain-injured patients, one in an unresponsive wakefulness syndrome (UWS), one in a minimally conscious state (MCS), and one patient emerged from MCS (EMCS). Repeated behavioral assessment by means of Coma Recovery Scale-Revised and neurophysiological evaluation were performed in the two weeks before and after neuroimaging acquisition, to ascertain that clinical diagnosis was stable. The three patients underwent one imaging session, during which two resting-state fMRI (rs-fMRI) blocks were run with a temporal gap of about 30 min. rs-fMRI data were analyzed with a graph theory approach applied to nine independent networks. We also analyzed the benefits of concatenating the two acquisitions for each patient or to select for each network the graph strength map with a higher ratio of fitness. Finally, as for clinical assessment, we considered the best functional connectivity pattern for each network and correlated graph strength maps to FDG uptake. Functional connectivity analysis showed several differences between the two rs-fMRI acquisitions, affecting in a different way each network and with a different variability for the three patients, as assessed by ratio of fitness. Moreover, combined PET/fMRI analysis demonstrated a higher functional/metabolic correlation for patients in EMCS and MCS compared to UWS. In conclusion, we observed for the first time, through a test-retest approach, a variability in the appearance and temporal/spatial patterns of resting-state networks in severely brain-injured patients, proposing a new method to select the most informative connectivity pattern

    ESTUDO DA ADSORÇÃO DE Cu(II) UTILIZANDO CASCA DE EUCALIPTO COMO BIOSSORVENTE

    Get PDF
    Neste trabalho foi investigada a aplicabilidade de um adsorvente de baixo custo, a casca de eucalipto (CE), para a remoção de íons Cu (II) de soluções aquosas. A casca de eucalipto foi pirolisada a 600 oC e aplicada tanto na forma de pó como na forma não pulverizada. Além disso, verificou-se o efeito do tempo de contato do adsorvato com o material adsorvente, determinando-se a concentração de íons cobre após o tempo de adsorção. Os resultados obtidos mostraram a potencialidade do uso da CE pirolisada e pulverizada como material biossorvente

    The Genome of Anopheles darlingi, the main neotropical malaria vector

    Get PDF
    Anopheles darlingi is the principal neotropical malaria vector, responsible for more than a million cases of malaria per year on the American continent. Anopheles darlingi diverged from the African and Asian malaria vectors ∼100 million years ago (mya) and successfully adapted to the New World environment. Here we present an annotated reference A. darlingi genome, sequenced from a wild population of males and females collected in the Brazilian Amazon. A total of 10 481 predicted protein-coding genes were annotated, 72% of which have their closest counterpart in Anopheles gambiae and 21% have highest similarity with other mosquito species. In spite of a long period of divergent evolution, conserved gene synteny was observed between A. darlingi and A. gambiae. More than 10 million single nucleotide polymorphisms and short indels with potential use as genetic markers were identified. Transposable elements correspond to 2.3% of the A. darlingi genome. Genes associated with hematophagy, immunity and insecticide resistance, directly involved in vectorhuman and vectorparasite interactions, were identified and discussed. This study represents the first effort to sequence the genome of a neotropical malaria vector, and opens a new window through which we can contemplate the evolutionary history of anopheline mosquitoes. It also provides valuable information that may lead to novel strategies to reduce malaria transmission on the South American continent. The A. darlingi genome is accessible at www.labinfo.lncc.br/index.php/anopheles- darlingi. © 2013 The Author(s)

    Periodic neural activity induced by network complexity

    Get PDF
    We study a model for neural activity on the small-world topology of Watts and Strogatz and on the scale-free topology of Barabási and Albert. We find that the topology of the network connections may spontaneously induce periodic neural activity, contrasting with nonperiodic neural activities exhibited by regular topologies. Periodic activity exists only for relatively small networks and occurs with higher probability when the rewiring probability is larger. The average length of the periods increases with the square root of the network size

    A method for independent component graph analysis of resting-state fMRI

    Get PDF
    © 2017 The Authors. Brain and Behavior published by Wiley Periodicals, Inc. Introduction: Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Objective: Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. Methods: First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network “neuronal” properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Results: Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. Conclusions: This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength
    corecore