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Abstract
Introduction: Independent component analysis (ICA) has been extensively used for re-
ducing task-free BOLD fMRI recordings into spatial maps and their associated time-
courses. The spatially identified independent components can be considered as intrinsic 
connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns 
of the networks have been analyzed with techniques developed for volumetric data.
Objective: Here, we detail a graph building technique that allows these ICNs to be 
analyzed with graph theory.
Methods: First, ICA was performed at the single-subject level in 15 healthy volunteers 
using a 3T MRI scanner. The identification of nine networks was performed by a 
multiple-template matching procedure and a subsequent component classification 
based on the network “neuronal” properties. Second, for each of the identified net-
works, the nodes were defined as 1,015 anatomically parcellated regions. Third, 
between-node functional connectivity was established by building edge weights for 
each networks. Group-level graph analysis was finally performed for each network and 
compared to the classical network.
Results: Network graph comparison between the classically constructed network and 
the nine networks showed significant differences in the auditory and visual medial 
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1  | INTRODUCTION

The evaluation of functional connectivity from resting-state fMRI data 
is broadly based on two families of analytical methods. Seed-based 
correlation analysis estimates the relationship between a predefined 
region (the “seed”) and all other voxels around the brain (Biswal, Yetkin, 
Haughton, & Hyde, 1995; Fox & Raichle, 2007; Fox et al., 2005). A 
commonly employed alternative is independent component analysis 
(ICA; Beckmann, DeLuca, Devlin, & Smith, 2005; Damoiseaux et al., 
2006; Esposito et al., 2008; Hyvärinen, Karhunen, & Oja, 2001), a 
data-driven approach to decompose whole-brain BOLD signal into a 
number of contributing volumetric spatial maps and their associated 
time-courses, such that the spatial independence of the components 
is maximized. ICA has proven to be an effective and robust tool for the 
isolation of low-frequency resting-state patterns from data acquired 
at various spatial and temporal resolutions (De Luca, Beckmann, De 
Stefano, Matthews, & Smith, 2006). The ICA-generated volumetric 
maps are generally reported as z-scores in order to show the contri-
bution of each component’s time-course to the BOLD signal in each 
voxel. These maps are then commonly analyzed in a voxel-wise man-
ner in order to show between or within-group connectivity differences 
(Greicius, Srivastava, Reiss, & Menon, 2004). The number of compo-
nents is generally user-defined and many of the resulting components 
may be due to non-neuronal activity (such as cardiovascular signal, 
eye movements, muscle activity in the vicinity of the head and head 
movement). Classically 10 functional networks can be reliably iden-
tified from ICA (Beckmann et al., 2005; Damoiseaux et al., 2006; De 
Luca et al., 2006; Fox & Raichle, 2007) by decomposing the signal and 
to separate neuronal from non-neuronal components. Apart from 
voxel-wise statistics, graph theory could be applied to the functional 
networks which provides tools for analysis of network topography and 
connectivity (Rubinov & Sporns, 2010). Functional and structural con-
nectome analysis has become increasingly common in neuroscience. 
In these methods, the brain is defined abstractly as a network of nodes 
with edges connecting them. Nodes are often anatomically defined re-
gions, whereas edges typically carry weights describing the correlation, 

similarity, or degree of connectivity between nodes. Adjacency graphs, 
in which the edge’s existence is binary and carry no representative 
weight, are also common, as data-driven approaches for brain par-
cellation (Bullmore & Bassett, 2011). Usually, a weighted graph W is 
created by calculating a connectivity measure between every pair of 
regions; subsequently, the meaningful properties of the graph are car-
ried out by network analysis methods, such as summary statistics (e.g., 
degree, small-worldness) and permutation testing (Zalesky, Fornito, 
& Bullmore, 2010). To our knowledge, no graph theory approach has 
been developed to evaluate the organization properties within brain 
networks derived from ICA. A graphical method permits to extract 
properties of a region of interest in the context of the full network. A 
comparison of graphical properties goes far beyond the comparison 
of the z values, as commonly done with the comparison of IC spatial 
maps voxel by voxel, where each voxel is treated as a separate en-
tity and not considered in the context of the full brain spatial map. 
The method we present here incorporates pieces of both families of 
methods and it is a generalization to the entire brain of a previously 
introduced approach restricted to the default mode network (DMN) 
to study functional connectivity changes in patients with disorders 
of consciousness (Soddu et al., 2012). Following, this approach has 
been also applied in patients suffering from tinnitus focusing on the 
auditory network (Maudoux et al., 2012a, 2012b). We do believe that 
our method, for the very first time, permits a comparison of IC spatial 
maps using the advantage of graph theory.

2  | METHODS

In short, we used ICA and machine learning classification to isolate 
a set of neuronal components (Demertzi et al., 2014), and then con-
struct weighted graphs for each of these components. As in other 
functional and structural connectivity mapping methods, we defined 
our regions based on structural parcellation (Cammoun et al., 2012; 
Gerhard et al., 2011). As the parcellation concerned cortical areas 
only, the cerebellum was not here considered as a network of interest, 

networks with regard to the average degree and the number of edges, while the visual 
lateral network showed a significant difference in the small-worldness.
Conclusions: This novel approach permits us to take advantage of the well-recognized 
power of ICA in BOLD signal decomposition and, at the same time, to make use of 
well-established graph measures to evaluate connectivity differences. Moreover, by 
providing a graph for each separate network, it can offer the possibility to extract 
graph measures in a specific way for each network. This increased specificity could be 
relevant for studying pathological brain activity or altered states of consciousness as 
induced by anesthesia or sleep, where specific networks are known to be altered in 
different strength.

K E YWORD S
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reducing the number of ICA maps analyzed to nine. The edge weight-
ing in the graphs was fairly unique to this method, and depended on 
a node-based calculation of the contribution of the specific compo-
nent to the average BOLD signal in that region. We then calculated 
the weight (dependent on the magnitude and type of contribution) 
between each pair of nodes that reflects the similarity between them 
through a common similarity with the time course of the component 
of interest. This approach provided weighted within-component 
graphs that are related to distinct and known cognitive functions and 
could be quantified by using graph theory. In principle, this technique 
can be applied to any independent component map.

2.1 | Subjects

Fifteen (mean age = 43 ± 15, 7 women) healthy subjects, free of psy-
chiatric or neurological history, were studied. The Ethics Committee 
of the Medical School at the University of Liège approved the study. 
Informed consent to participate in the study was obtained from every 
subject.

2.2 | Data acquisition and preprocessing

Functional MRI time series were acquired on a 3T head-only scan-
ner (Siemens Trio, Siemens Medical Solutions, Erlangen, Germany) 
operated with a standard transmit-receive quadrate head coil. Three 
hundred multislice T2*-weighted functional images were acquired 
with a gradient-echo echo-planar imaging sequence using axial 
slice orientation and covering the whole brain (32 slices; voxel size: 
3 × 3 × 3 mm3; matrix size 64 × 64 × 32; repetition time = 2,000 ms; 
echo time = 30 ms; flip angle = 78°; field of view = 192 × 192 mm2). 
The three initial volumes were discarded to avoid T1 saturation ef-
fects. The subjects were instructed to close their eyes, relax without 
falling asleep and refrain from any structured thinking such as count-
ing, singing etc. A high-resolution T1-weighted image was also ac-
quired for each subject (120 slices, repetition time = 2,300 ms, echo 
time = 2.47 ms, voxel size = 1 × 1 × 1.2 mm3, flip angle = 9°, field of 
view = 256 × 256 mm2). Data preprocessing was performed using 
Statistical Parametric Mapping 8 (RRID:nif-0000-00343; www.fil.ion.
ucl.ac.uk/spm). Preprocessing steps included realignment and adjust-
ment for movement-related effects, coregistration of functional with 
structural images, segmentation of structural data, spatial and func-
tional normalization into standard stereotactic Montreal Neurological 
Institute space, and spatial smoothing of the fMRI data with a 
Gaussian kernel of 8 mm full-width at half-maximum. Further correc-
tion for small, large, and rapid motions, noise spikes, and spontaneous 
deep breaths was applied using ArtRepair (RRID:SCR-005990; cibsr.
stanford.edu/tools/human-brain-project/artrepair-software.html).

2.3 | Independent component analysis and 
component classification

Single-subject independent component analysis was performed using 
the Infomax algorithm within the Group ICA of fMRI Toolbox (RRID: 

SCR-001953; http://mialab.mrn.org/software/gift/) with a prede-
fined number of components equal to thirty. The component spatial 
images were calibrated to the raw data so that the intensity values 
were in units of percent signal change from the mean. Components 
were subsequently assigned to the putative intrinsic connectivity net-
works using a multiple-template matching procedure. This method 
extends the single-template goodness-of-fit approach by assigning 
the independent component that maximizes the goodness-of-fit to a 
binary predefined template while considering all of the RSNs simul-
taneously. This procedure has been described previously (Demertzi 
et al., 2014).

For the discrimination between “neuronal” and “non-neuronal” 
independent components, a binary classification approach using sup-
port vector machine (SVM) was performed. The training of the SVM 
classifier was performed on the fingerprints of the independent com-
ponents obtained from ICA decomposition with 30 components in 
19 independently studied healthy subjects (Demertzi et al., 2014). 
The classifier with highest overall classification rate was selected 
and subsequently used to label neuronal independent components. 
Independent components that failed to pass the “neuronality” test 
were excluded. See Figure 1a for a pictorial description of the above-
described procedure.

2.4 | Regional parcellation

Segmentation of each subject’s T1-weighted image was performed 
with Freesurfer’s automatic segmentation pipeline and the Desikan 
Killiany atlas (De Luca et al., 2006). Further parcellation, using the 
Lausanne 2008 atlas and its 1,015 individually labeled regions, was 
done with functions from the Connectome Mapping Toolkit, in order 
to separate different ICA-derived networks into non-overlapping spa-
tial components (Cammoun et al., 2012; Daducci et al., 2012; Gerhard 
et al., 2011; Gorgolewski et al., 2011). To facilitate the creation of the 
functional networks, this type of parcellation was performed for both 
the original and spatially normalized T1 images for each subject. See 
Figure 1b for an illustrative description of the final parcellation.

2.5 | Functional network construction

In the following, the letters N, P and R will refer to the number of ICA 
neuronal components (N), the number of BOLD signal time points (P) 
and the number of parcellated regions (R), respectively.

Let X a N × P matrix storing at the ith row the timecourse of the ith 
independent component and Y a R × P matrix containing at the ith row 
the timecourse of the BOLD signal averaged over the voxel belong-
ing to the ith region. The process of identifying regional time-courses 
across a set of anatomically defined voxels is shown in Figure 1c. We 
solve the simple equation:

for the N × R matrix β, using the least squares solution (Worsley & 
Friston, 1995). This means minimizing the value of:

(1)Y=Xβ

(2)‖Y−Xβ‖2

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software.html
http://mialab.mrn.org/software/gift/
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with an error term ε, for every region and each component:

The regression value βij describes how the time course of the 
jth region can be explained by the ith independent component time 
course plus an error term. The regression values are, however, values 
of arbitrary size and variance and cannot be interpreted directly. In 
order to deal with this issue, we chose to transform these values into 
t-values (Worsley & Friston, 1995), using the following equation:

where c is a vector indexing each component, and T is the matrix of 
t-values by region and IC. At this point, we have regional t-values 

for each component, which can be used to build weighted graphs, 
Figure 1c. The goal is to choose an appropriate weighting scheme such 
that edges are strong between regions which both contribute largely, 
and with similar strengths, to the regional fMRI time course. For this 
reason, we have chosen a straightforward weighting equation for the 
degree of connection between two nodes:

where Wa,b represents the edge weight between nodes a and b, and ta, 
tb are the t-values for node a and b, respectively.

Equation 5 produces a zero weight for ta and tb with opposite 
signs. Here, we restrain the analysis to positive correlation networks 
only, for which a connection is considered only between nodes with 
t-values of the same sign. It is also possible to construct the comple-
mentary anti-correlation networks, by drawing edges between regions 

(3)ε=Y−Xβ

(4)T=
cTβ

√
Var(ε)cT(XTX)

−1
c

(5)Wa,b= |ta|+ |tb|− |ta− tb|

F IGURE  1 Processing workflow for 
functional networks: (a) 1, preprocessing: 
registration to T1 (SPM8); 2, independent 
component analysis (GIFT) and 3, 
neuronality check and template matching. 
(b) 1, Spatial normalization of T1 (SPM8), 
2, Atlas-based segmentation (FreeSurfer) 
and 3, parcellation (Nipype/CMTK, 
Lausanne 1,015 atlas). (c) 1, Extract regional 
fMRI timecourses (Y), 2, least squares 
solution to estimate β values using as 
predictors the timecourse from ICA as in (a) 
and 3, transform β values to t values. (d) 1, 
Calculate edge weights and draw networks 
for each independent component and 2, 
threshold correlation and anti-correlation 
networks and analyze separately
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with opposing signs. For creating weighted edges between nodes of 
opposite sign, the following equation can be used:

2.6 | Thresholding network edges

We estimated the degrees-of-freedom by considering the number of 
functional image volumes and the number of independent compo-
nents in our network construction procedure. This led to the equation:

Given the degrees of freedom and the desired significance level 
(p < .001), we calculated the t-value with which to threshold our 
graphs. We chose to threshold our networks to remove all t-values 
that were not in the 99th percentile. This led to the calculation:

Following the weighting scheme described in Equation 5, the 
nodes can have edge weights ranging from zero to the sum of their 
t-values. For this reason, we chose to discard edges above 2 × tthresh-
old with 2 × tthreshold being the maximum value for Wa,b given the as-
sumed tthreshold. Group level networks, as presented in Figures 2–6, 
were created by thresholding each subject weighted matrix Wa,b and 
by subsequently keeping the edges which were present in at least 
25% of the subjects.

2.7 | Classical network connectivity matrix

With the aim of the creation of a whole-brain connectivity matrix, 
we reconstructed the functional MRI signal at each voxel by a lin-
ear combination of the components deemed “neuronal” by the clas-
sifier with weights coming from the corresponding scalar maps of 

each component. The resulting signal, cleaned off “non-neuronal” 
noise, was then averaged over all the voxels belonging to the same 
parcellated region to obtain time courses for each of the 1,015 re-
gions. The W matrix, representing the classical network, was then 
calculated.

2.8 | Network analysis and statistics

Nodes for each network of interest were previously extracted as the 
non-isolated nodes of the corresponding group level networks previ-
ously introduced and presented in Figures 2–6. We have considered 
several network summary statistics for the graphs. We computed the 
number of edges (E), average degree (k), average number of triangles 
and small-worldness (Rubinov & Sporns, 2010) as shown in Table 1. 
A graph is a formal mathematical representation of a network and 
each object in a graph is called a node. The number of edges rep-
resents the number of connections between each pair of connected 
nodes. The average degree represents the average number of con-
nections (edges) per node. Isolated nodes (nodes without edges) were 
discarded and all the properties were calculated for the constellation 
of connected nodes. The number of triangles represents triplets of 
nodes in which each node is connected to the two others. The small-
worldness was calculated by:

where C and Crand are the clustering coefficients and L and Lrand are 
the characteristic path lengths of the network of interest and the 
corresponding random network (Humphries & Gurney, 2008). Small-
worldness is an extremely important property of networks. These 
networks are “highly clustered, like regular lattices, yet have small 
characteristic path lengths, like random graphs” making them very ef-
ficient in information transfer (Watts & Strogatz, 1998).

(6)W
AC
a,b

= |ta|+ |tb|− |ta+ tb|

(7)DOF=Nvolumes−Ncomponents−1

(8)tthreshold= t
INV(Confidence, DOF)

(9)σ=
C∕Crand

L∕Lrand

F IGURE  2 Sagittal and axial 
representation of the network and cortical 
extent of the relative IC for the DMN. The 
degree of each one of the 1,015 regions is 
represented by the node’s size and orange 
to yellow gradient. On the right, cortical 
parcellation for DMN extracted by group-
ICA superimposed to a structural T1 image
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The properties were calculated at subject-level producing a dis-
tribution of graphical values for the network of interest. This method 
was used to compare the graph properties (Table 1) among the differ-
ent networks as shown in Figure 7. An ANOVA test was performed to 
compare all the nine weighted functional networks with the weighted 
classical network. The calculation for both networks was restricted 
only to the nodes belonging to the network of interest due to the 
number of nodes of a network have an strong effect in resulting topol-
ogy (Zalesky, Fornito, Harding, et al., 2010). Column 3 in Table 1 shows 
the number of non-isolated nodes for each network. For the number 
of triangles, the comparison was performed by firstly normalizing the 
number of triangles by a random network containing the same number 
of nodes.

To determine which networks are different from the others, we 
conducted a post hoc paired comparison (Tukey post hoc test as im-
plemented in R), which is designed to evaluate the difference between 
each pair of networks, Figure 7.

3  | RESULTS

3.1 | Component classification

The template-matching and fingerprint selection criteria identified 
the predefined neuronal components within the group of healthy 
controls. The percentage of subjects in which they were found is 
presented in the second column in Table 1. The Sensorimotor was 
the highest recognized network, with the score of detection equal 
to 87% of the subjects. The executive control left and visual occipi-
tal networks were the lowest recognized networks, being present 
in 33% of the subjects. ICA was used to separate the signal into 
non-overlapping spatial and time components. This data-driven 
method was able to extract the DMN as well as many other net-
works with very high consistency, that can be verified by com-
paring Figures 2–6 with the z-maps produced using the classical 
approach.

F IGURE  3 Graphical representation 
of the network and cortical extent of the 
relative ICs for the left and right executive 
control networks. The degree of each one 
of the 1,015 regions is represented by the 
node’s size and color gradient. On the right 
column, cortical location for each network 
was extracted by group-ICA superimposed 
to a structural T1 image
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3.2 | Network properties

The network properties were calculated for the nine independent 
component networks of interest for all the 15 subjects. The results 
are shown in Table 1.

When comparing each of the nine networks with the classical net-
work, focusing only on the constellation of nodes characterizing the 
network of interest, see Figure 7, we found that the auditory and the 
visual medial networks had a significantly different number of edges 
and degree with respect to the classical network. Alternatively, when 
comparing small-worldness it was the visual lateral network showing a 
significantly different value from the classical network. No significant 
differences were found for the normalized number of triangles. (See in 
the Table S1 for graph properties and Figure S1 for a similar ANOVA 
analysis performed this time over all the 1,015 nodes).

The sagittal and axial graphical representations of the networks, 
as created from the respective group level matrix W, are shown in 

Figure 8 (all nine overlapping networks and the classical network). 
They were also presented separately, DMN in Figure 2, executive con-
trol left and executive control right in Figure 3, auditory and salience in 
Figure 4, sensorimotor and visual lateral in Figure 5 and visual medial 
and visual occipital in Figure 6. As shown in Figure 8, the nodes with 
the highest degree of the classical network are also the nodes with the 
highest average degree shared by the nine different networks. From 
Figures 2–6 it is also possible to recognize that the clusters of nodes 
with higher degree tend to be spatially distributed as the high z-value 
in the corresponding independent component z-map for the spatial pat-
terns of the nine independent components (Damoiseaux et al., 2006).

4  | DISCUSSION

We presented a novel method for applying graph theory metrics to 
resting state fMRI brain networks derived from data-driven ICA. With 

F IGURE  4 Graphical representation 
of the network and cortical extent of 
the relative ICs for auditory and salience 
networks. The degree of each one of 
the 1,015 regions is represented by the 
node’s size and color gradient. On the right 
column, cortical location for each network 
was extracted by group-ICA superimposed 
to a structural T1 image
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this within-component approach, the between-group topological dif-
ferences in connective structure of functional networks can be stud-
ied with well-established network measures employed in graph theory.

Classical approaches are based on the recognition of RSNs from 
different ICA processing results, such as multiple template-matching 
(Demertzi et al., 2014), high dimensional ICA (Dipasquale et al., 2015) 
and fully exploratory network ICA (Schöpf et al., 2010); once each 
RSN is estimated, their spatial distributions are usually compared 
voxel-wise between subjects or groups for the assessment of within-
network differences. On the other hand, at the best of our knowledge, 
there is not yet an effective procedure for the analysis and comparison 
of graph properties between network components derived from spa-
tial ICA procedures.

A similar approach has been proposed for the analyses of within-
network organization. In (Park et al., 2014), an alternative method for 
the estimation of each RSN is employed. As our method, it provides 
information on the connectivity among each component, but each 
component is not derived with a conventional spatial-ICA approach. 

Therefore, our method offers more flexibility, since it deals with com-
monly derived ICA components, exploiting the well-established ad-
vantage of spatial ICA for the rejection of artifactual components.

Comparison between the nine networks and the classical network 
did not show, for most of the comparisons, significant differences in 
the studied graph properties, which indicates similarity in their graph 
structure. The absence of main differences is also indicating the fact 
that when restricting to network’s regions, connectivity due to the time 
course behavior representative of the IC of interest is capturing almost 
entirely the full neuronal behavior. (Figure S1 in supplementary material 
shows clearly that when extending the analysis to the full brain, i.e., 
1,015 nodes, deviation of the classical network from the network of 
interest become more relevant, considering that now, as expected, out-
side the constellation of nodes representative of the network of interest 
the classical network gets contributions from all the other networks).

The significant differences in the number of edges and degree, for 
the auditory and visual medial networks together with the significant 
small-worldness for the visual lateral network, are suggesting that the 

F IGURE  5 Graphical representation 
of the network and cortical extent of the 
relative ICs for sensorimotor and visual 
lateral networks. The degree of each one 
of the 1,015 regions is represented by the 
node’s size and color gradient. On the right 
column, cortical location for each network 
was extracted by group-ICA superimposed 
to a structural T1 image
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Type % No. of nodes E (103) k Triangles (103) σ

AUD 80 265 15 ± 2 144 ± 9 1.13 ± 0.02 1.18 ± 0.03

DMN 47 356 26 ± 4 167 ± 14 1.28 ± 0.03 1.41 ± 0.05

ECL 33 153 6 ± 1 84 ± 5 1.53 ± 0.04 1.88 ± 0.07

ECR 80 131 9 ± 1 105 ± 7 1.51 ± 0.03 1.86 ± 0.06

SA 80 116 17 ± 7 115 ± 30 1.10 ± 0.04 1.14 ± 0.06

SM 87 102 5 ± 1 80 ± 13 1.44 ± 0.09 1.68 ± 0.16

VL 60 133 14 ± 3 121 ± 15 1.34 ± 0.06 1.58 ± 0.10

VM 73 277 22 ± 2 174 ± 12 1.24 ± 0.04 1.38 ± 0.06

VO 33 183 10 ± 1 123 ± 10 1.38 ± 0.09 1.61 ± 0.18

The properties were calculated for each subject. The measure of variability is reported with the mean. 
Networks: AUD, auditory; DMN, default mode network; ECL, executive control left; ECR, executive 
control right; SA, salience; SM, sensorimotor; VL, visual lateral; VM, visual medial and VO, visual occipi-
tal. The properties: %, percentage of subjects that have the respective network; No. of nodes, number 
of connected nodes among the 1,015 possible nodes; E, Number of Edges; k, average degree and σ, 
Small-Worldness Index.

TABLE  1 Graph theoretical metrics for 
the nine independent component masked 
networks

F IGURE  6 Graphical representation 
of the network and cortical extent of the 
relative ICs for visual medial and visual 
occipital networks. The degree of each one 
of the 1,015 regions is represented by the 
node’s size and color gradient. On the right 
column, cortical location for each network 
was extracted by group-ICA superimposed 
to structural T1 image
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time course behavior of each separate independent component is con-
tributing to the total neuronal signal in a less dominant fashion, especially 
in the regions of sensory networks. In particular a higher value for small-
worldness indicates that the network, based on the separate time course 

behavior of visual lateral network, has higher global and local efficiency 
of parallel information processing, sparse connectivity between nodes 
and low wiring costs (Bassett & Bullmore, 2006) with respect to the cor-
responding classical network derived from the full neuronal signal.

F IGURE  7 Weighted network pairs and significant difference analysis using post hoc paired comparison for each network property. The 
colors red and orange represent p-values ≤.05 and ≤.01, respectively. Networks: X_CN (X represents the mask used to keep just the nodes 
belonging to the respective network and CN is the classical network), DMN (default mode network), AUD (auditory), ECL (executive control left), 
ECR (executive control right), SA (salience), SM (sensorimotor), VL (visual lateral), VM (visual medial) and VO (visual occipital)



     |  11 of 12RIBEIRO de PAULA et al.

A drawback of the procedure is that it relies on a spatiotempo-
ral “neuronality” check and template matching procedure prior to 
network creation. It is obvious that the template matching will only 
work properly if the subjects’ brain activity patterns fit the predefined 
templates. Pathological brain morphology may affect network pre-
sentation, however, we do not know in which form the functional 
networks will appear. It may be attractive to perform some type of 
component clustering to obtain data-driven sets of the groups’ most 
common graph types. Component clustering has been performed 
repeatedly in ICA analyses using volumetric data, as well as in other 
graph-theoretical studies (van den Heuvel, Mandl, & Pol, 2008). It is 
not clear which parameters the clustering algorithm would need to be 
based on, but some suitable candidates could be local edge weight and 
nodal network metrics. Finally, it is clear that new method could be de-
veloped at the single subject level to select the component of interest. 
In fact, for example, given the selection of nodes that form a network 
(a priori knowledge) for a component of interest, an IC could be se-
lected as the component with the highest average number of edges 
in the selected constellation of nodes. Therefore, this approach could 
be quite appealing to patients suffering severe brain injury, consid-
ering that the networks might be highly affected. For these patients, 
structural information could be used to indicate the partial selection 
of nodes which we would like to focus on, and simply select the com-
ponent based on the highest average number of edges for the newly 
selected constellation of nodes.

5  | CONCLUSIONS

We presented an approach for the analysis of resting state networks 
carried out by dissecting the connectivity patterns of task-free fMRI 
data by using ICA. Our results suggest that, by evaluating independent 
component networks using graph theory instead of using volumetric 

data, one could take full advantage of graphical methods, which per-
mit the comparison of local properties in the context of the full brain. 
Moreover, our approach is the basis for further refinements such as a 
component clustering based on network topology. Similarly, the initial 
investigation into the anti-correlation networks for the 15 subjects 
studied here showed wide variability in structural topology, and it 
needs to be further investigated. In future, one could selectively con-
nect edges based on the sign of two nodes t-values and explore the 
differences between graphs created with differing parity.

ACKNOWLEDGMENTS

This research was supported by the Canada Excellence Research 
Chairs (CERC), the James S. McDonnell Foundation (JSMF) pro-
grams, a discovery grant from the Natural Sciences and Engineering 
Research Council of Canada (NSERC), the Belgian National Fund 
for Scientific Research, the University of Liege, the Queen Elisabeth 
Medical Foundation, the Leon Fredericq Foundation, the Belgian 
Inter-University Attraction Program, the Walloon Excellence in Life 
Sciences and Biotechnology program, and the Marie Curie Initial 
Training Network in Neurophysics (PITN-GA-2009-238593).

CONFLICT OF INTEREST

None declared.

REFERENCES

Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. The 
Neuroscientist, 12, 512–523.

Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). 
Investigations into resting-state connectivity using independent com-
ponent analysis. Philosophical Transactions of the Royal Society of London 
B: Biological Sciences, 360, 1001–1013.

F IGURE  8 Sagittal and axial 
representation of all nine networks (default 
mode network, executive control left, 
executive control right, visual lateral, 
visual medial, visual occipital, auditory, 
sensorimotor and salience) overlapped and 
classical network, with threshold 0.45. The 
average degree of each node is represented 
by the node’s size and color gradient



12 of 12  |     RIBEIRO de PAULA et al.

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional 
connectivity in the motor cortex of resting human brain using echo-
planar MRI. Magnetic Resonance in Medicine, 34, 537–541.

Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: Graphical models of 
the human brain connectome. Annual Review of Clinical Psychology, 7, 
113–140.

Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns, O., Do, K. 
Q., … Hagmann, P. (2012). Mapping the human connectome at multiple 
scales with diffusion spectrum MRI. Journal of Neuroscience Methods, 
203, 386–397.

Daducci, A., Gerhard, S., Griffa, A., Lemkaddem, A., Cammoun, L., Gigandet, 
X., … Thiran, J.-P. (2012). The connectome mapper: An open-source 
processing pipeline to map connectomes with MRI. PLoS One, 7, 
e48121.

Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S. 
M., & Beckmann, C. (2006). Consistent resting-state networks across 
healthy subjects. Proceedings of the National Academy of Sciences, 103, 
13848–13853.

De Luca, M., Beckmann, C., De Stefano, N., Matthews, P., & Smith, S. (2006). 
fMRI resting state networks define distinct modes of long-distance in-
teractions in the human brain. NeuroImage, 29, 1359–1367.

Demertzi, A., Gómez, F., Crone, J. S., Vanhaudenhuyse, A., Tshibanda, 
L., Noirhomme, Q., Thonnard, M., Charland-Verville, V., Kirsch, M., 
Laureys, S., & Soddu, A. (2014). Multiple fMRI system-level baseline 
connectivity is disrupted in patients with consciousness alterations. 
Cortex, 52, 35–46.

Dipasquale, O., Griffanti, L., Clerici, M., Nemni, R., Baselli, G., & Baglio, 
F. (2015). High-Dimensional ICA Analysis Detects Within-Network 
Functional Connectivity Damage of Default-Mode and Sensory-Motor 
Networks in Alzheimer’s Disease. Frontiers in Human Neuroscience, 9, 43.

Esposito, F., Aragri, A., Pesaresi, I., Cirillo, S., Tedeschi, G., Marciano, E., … 
Di Salle, F. (2008). Independent component model of the default-mode 
brain function: Combining individual-level and population-level anal-
yses in resting-state fMRI. Magnetic Resonance Imaging, 26, 905–913.

Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain ac-
tivity observed with functional magnetic resonance imaging. Nature 
Reviews Neuroscience, 8, 700–711.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & 
Raichle, M. E. (2005). The human brain is intrinsically organized into dy-
namic, anticorrelated functional networks. Proceedings of the National 
Academy of Sciences of the United States of America, 102, 9673–9678.

Gerhard, S., Daducci, A., Lemkaddem, A., Meuli, R., Thiran, J.-P., & 
Hagmann, P. (2011). The connectome viewer toolkit: an open source 
framework to manage, analyze, and visualize connectomes. Frontiers in 
Neuroinformatics, 5, 3.

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., 
Waskom, M. L., & Ghosh, S. S. (2011). Nipype: a flexible, lightweight 
and extensible neuroimaging data processing framework in Python. 
Frontiers in Neuroinformatics, 5, 13.

Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-
mode network activity distinguishes Alzheimer’s disease from healthy 

aging: Evidence from functional MRI. Proceedings of the National 
Academy of Sciences of the United States of America, 101, 4637–4642.

Humphries, M. D., & Gurney, K. (2008). Network ‘small-world-ness’: A 
quantitative method for determining canonical network equivalence. 
PLoS One, 3, e0002051.

Hyvärinen, A., Karhunen, J., & Oja, E. (2001). Independent component analy-
sis. New York, NY: Wiley. xxi, 481 s. p.

Maudoux, A., Lefebvre, P., Cabay, J.-E., Demertzi, A., Vanhaudenhuyse, A., 
Laureys, S., & Soddu, A. (2012a). Auditory resting-state network con-
nectivity in tinnitus: A functional MRI study. PLoS One, 7, e36222.

Maudoux, A., Lefebvre, P., Cabay, J.-E., Demertzi, A., Vanhaudenhuyse, 
A., Laureys, S., & Soddu, A. (2012b). Connectivity graph analysis of 
the auditory resting state network in tinnitus. Brain Research, 1485, 
10–21.

Park, B., Kim, D.-S., & Park, H.-J. (2014). Graph Independent Component 
Analysis Reveals Repertoires of Intrinsic Network Components in the 
Human Brain. PLoS One, 9, e82873.

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain con-
nectivity: Uses and interpretations. NeuroImage, 52, 1059–1069.

Schöpf, V., Kasess, C. H., Lanzenberger, R., Fischmeister, F., Windischberger, 
C., & Moser, E.   (2010). Fully exploratory network ICA (FENICA) on 
resting-state fMRI data. Journal of neuroscience methods, 192, 207–213.

Soddu, A., Vanhaudenhuyse, A., Bahri, M. A., Bruno, M.-A., Boly, M., 
Demertzi, A., … Noirhomme, Q. (2012). Identifying the default-mode 
component in spatial IC analyses of patients with disorders of con-
sciousness. Human Brain Mapping, 33, 778–796.

van den Heuvel, M., Mandl, R., & Pol, H. H. (2008). Normalized cut group 
clustering of resting-state FMRI data. PLoS One, 3, e2001.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ 
networks. Nature, 393, 440–442.

Worsley, K. J., & Friston, K. J. (1995). Analysis of fMRI time-series revis-
ited—Again. NeuroImage, 2, 173–181.

Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based sta-
tistic: Identifying differences in brain networks. NeuroImage, 53, 
1197–1207.

Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., & 
Bullmore, E. T. (2010). Whole-brain anatomical networks: Does the 
choice of nodes matter? NeuroImage, 50, 970–983.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the support-
ing information tab for this article.

How to cite this article: Ribeiro de Paula D, Ziegler E, 
Abeyasinghe PM, et al. A method for independent component 
graph analysis of resting-state fMRI. Brain Behav. 
2017;7:e00626. https://doi.org/10.1002/brb3.626

https://doi.org/10.1002/brb3.626

