7,542 research outputs found
Sources and sinks separating domains of left- and right-traveling waves: Experiment versus amplitude equations
In many pattern forming systems that exhibit traveling waves, sources and
sinks occur which separate patches of oppositely traveling waves. We show that
simple qualitative features of their dynamics can be compared to predictions
from coupled amplitude equations. In heated wire convection experiments, we
find a discrepancy between the observed multiplicity of sources and theoretical
predictions. The expression for the observed motion of sinks is incompatible
with any amplitude equation description.Comment: 4 pages, RevTeX, 3 figur
Decoherence time in self-induced decoherence
A general method for obtaining the decoherence time in self-induced
decoherence is presented. In particular, it is shown that such a time can be
computed from the poles of the resolvent or of the initial conditions in the
complex extension of the Hamiltonian's spectrum. Several decoherence times are
estimated: for microscopic systems, and
for macroscopic bodies. For the particular case of a
thermal bath, our results agree with those obtained by the einselection
(environment-induced decoherence) approach.Comment: 11 page
Expedition 306 summary
The overall aim of the North Atlantic paleoceanography study of Integrated Ocean Drilling Program Expedition 306 is to place late Neogene–Quaternary climate proxies in the North Atlantic into a chronology based on a combination of geomagnetic paleointensity, stable isotope, and detrital layer stratigraphies, and in so doing generate integrated North Atlantic millennial-scale stratigraphies for the last few million years. To reach this aim, complete sedimentary sections were drilled by multiple advanced piston coring directly south of the central Atlantic “ice-rafted debris belt” and on the southern Gardar Drift. In addition to the North Atlantic paleoceanography study, a borehole observatory was successfully installed in a new ~180 m deep hole close to Ocean Drilling Program Site 642, consisting of a circulation obviation retrofit kit to seal the borehole from the overlying ocean, a thermistor string, and a data logger to document and monitor bottom water temperature variations through time
Cosmological anti-deSitter space-times and time-dependent AdS/CFT correspondence
We study classes of five-dimensional cosmological solutions with negative
curvature, which are obtained from static solutions by an exchange of a spatial
and temporal coordinate, and in some cases by an analytic continuation. Such
solutions provide a suitable laboratory to address the time-dependent AdS/CFT
correspondence. For a specific example we address in detail the calculation of
the boundary stress-energy and the Wilson line and find disagreement with the
standard AdS/CFT correspondence. We trace these discrepancies to the
time-dependent effects, such as particle creation, which we further study for
specific backgrounds. We also identify specific time-dependent backgrounds that
reproduce the correct conformal anomaly. For such backgrounds the calculation
of the Wilson line in the adiabatic approximation indicates only a Coulomb
repulsion.Comment: LaTeX file, 47 pages, discussion is extended, version to appear in
PR
Field Representations of Vector Supersymmetry
We study some field representations of vector supersymmetry with superspin
Y=0 and Y=1/2 and nonvanishing central charges. For Y=0, we present two
multiplets composed of four spinor fields, two even and two odd, and we provide
a free action for them. The main differences between these two multiplets are
the way the central charge operators act and the compatibility with the
Majorana reality condition on the spinors. One of the two is related to a
previously studied spinning particle model. For Y=1/2, we present a multiplet
composed of one even scalar, one odd vector and one even selfdual two-form,
which is a truncation of a known representation of the tensor supersymmetry
algebra in Euclidean spacetime. We discuss its rotation to Minkowski spacetime
and provide a set of dynamical equations for it, which are however not derived
from a Lagrangian. We develop a superspace formalism for vector supersymmetry
with central charges and we derive our multiplets by superspace techniques.
Finally, we discuss some representations with vanishing central charges.Comment: 37 page
PT-symetrically regularized Eckart,Poeschl-Teller and Hulthen potentials
Version 1: The well known Eckart's singular s-wave potential is
PT-symmetrically regularized and continued to the whole real line. The new
model remains exactly solvable and its bound states remain proportional to
Jacobi polynomials. Its real and discrete spectrum exhibits several unusual
features.
Version 2: Parity times time-reversal symmetry of complex Hamiltonians with
real spectra is usually interpreted as a weaker mathematical substitute for
Hermiticity. Perhaps an equally important role is played by the related
strengthened analyticity assumptions. In a constructive illustration we
complexify a few potentials solvable only in s-wave. Then we continue their
domain from semi-axis to the whole axis and get the new exactly solvable
models. Their energies come out real as expected. The new one-dimensional
spectra themselves differ quite significantly from their s-wave predecessors.Comment: Original 10-page letter ``PT-symmetrized exact solution of the
singular Eckart oscillator" is extended to a full pape
Non-Hermitian matrix description of the PT symmetric anharmonic oscillators
Schroedinger equation H \psi=E \psi with PT - symmetric differential operator
H=H(x) = p^2 + a x^4 + i \beta x^3 +c x^2+i \delta x = H^*(-x) on
L_2(-\infty,\infty) is re-arranged as a linear algebraic diagonalization at
a>0. The proof of this non-variational construction is given. Our Taylor series
form of \psi complements and completes the recent terminating solutions as
obtained for certain couplings \delta at the less common negative a.Comment: 18 pages, latex, no figures, thoroughly revised (incl. title), J.
Phys. A: Math. Gen., to appea
Field Theoretical Quantum Effects on the Kerr Geometry
We study quantum aspects of the Einstein gravity with one time-like and one
space-like Killing vector commuting with each other. The theory is formulated
as a \coset nonlinear -model coupled to gravity. The quantum analysis
of the nonlinear -model part, which includes all the dynamical degrees
of freedom, can be carried out in a parallel way to ordinary nonlinear
-models in spite of the existence of an unusual coupling. This means
that we can investigate consistently the quantum properties of the Einstein
gravity, though we are limited to the fluctuations depending only on two
coordinates. We find the forms of the beta functions to all orders up to
numerical coefficients. Finally we consider the quantum effects of the
renormalization on the Kerr black hole as an example. It turns out that the
asymptotically flat region remains intact and stable, while, in a certain
approximation, it is shown that the inner geometry changes considerably however
small the quantum effects may be.Comment: 16 pages, LaTeX. The hep-th number added on the cover, and minor
typos correcte
Analysis and modeling of high temporal resolution spectroscopic observations of flares on AD Leo
We report the results of a high temporal resolution spectroscopic monitoring
of the flare star AD Leo. During 4 nights, more than 600 spectra were taken in
the optical range using the Isaac Newton Telescope (INT) and the Intermediate
Dispersion Spectrograph (IDS). We have observed a large number of short and
weak flares occurring very frequently (flare activity > 0.71 hours-1). This is
in favour of the very important role that flares can play in stellar coronal
heating. The detected flares are non white-light flares and, though most of
solar flares belong to this kind, very few such events had been previously
observed on stars. The behaviour of different chromospheric lines (Balmer
series from H_alpha to H_11, Ca II H & K, Na I D_1 & D_2, He I 4026 AA and He I
D_3) has been studied in detail for a total of 14 flares. We have also
estimated the physical parameters of the flaring plasma by using a procedure
which assumes a simplified slab model of flares. All the obtained physical
parameters are consistent with previously derived values for stellar flares,
and the areas - less than 2.3% of the stellar surface - are comparable with the
size inferred for other solar and stellar flares. Finally, we have studied the
relationships between the physical parameters and the area, duration, maximum
flux and energy released during the detected flares.Comment: Latex file with 17 pages, 11 figures. Available at
http://www.ucm.es/info/Astrof/invest/actividad/actividad_pub.html Accepted
for publication in: Astronomy & Astrophysics (A&A
Resolved 24.5 micron emission from massive young stellar objects
Massive young stellar objects (MYSO) are surrounded by massive dusty
envelopes. Our aim is to establish their density structure on scales of ~1000
AU, i.e. a factor 10 increase in angular resolution compared to similar studies
performed in the (sub)mm. We have obtained diffraction-limited (0.6") 24.5
micron images of 14 well-known massive star formation regions with
Subaru/COMICS. The images reveal the presence of discrete MYSO sources which
are resolved on arcsecond scales. For many sources, radiative transfer models
are capable of satisfactorily reproducing the observations. They are described
by density powerlaw distributions (n(r) ~ r^(-p)) with p = 1.0 +/-0.25. Such
distributions are shallower than those found on larger scales probed with
single-dish (sub)mm studies. Other sources have density laws that are
shallower/steeper than p = 1.0 and there is evidence that these MYSOs are
viewed near edge-on or near face-on, respectively. The images also reveal a
diffuse component tracing somewhat larger scale structures, particularly
visible in the regions S140, AFGL 2136, IRAS 20126+4104, Mon R2, and Cep A. We
thus find a flattening of the MYSO envelope density law going from ~10 000 AU
down to scales of ~1000 AU. We propose that this may be evidence of rotational
support of the envelope (abridged).Comment: 21 pages, accepted for A&
- …
