87 research outputs found
Optical Characterisation of Suspended Particles in the Mackenzie River Plume (Canadian Arctic Ocean) and Implications for Ocean Colour Remote Sensing
Climate change significantly impacts Arctic shelf regions in terms of air temperature, ultraviolet radiation, melting of sea ice, precipitation, thawing of permafrost and coastal erosion. Direct consequences have been observed on the increasing Arctic river flow and a large amount of organic carbon sequestered in soils at high latitudes since the last glacial maximum can be expected to be delivered to the Arctic Ocean during the coming decade. Monitoring the fluxes and fate of this terrigenous organic carbon is problematic in such sparsely populated regions unless remote sensing techniques can be developed and proved to be operational. The main objective of this study is to develop an ocean colour algorithm to operationally monitor dynamics of suspended particulate matter (SPM) on the Mackenzie River continental shelf (Canadian Arctic Ocean) using satellite imagery. The water optical properties are documented across the study area and related to concentrations of SPM and particulate organic carbon (POC). Robust SPM and POC : SPM proxies are identified, such as the light backscattering and attenuation coefficients, and relationships are established between these optical and biogeochemical parameters. Following a semi-analytical approach, a regional SPM quantification relationship is obtained for the inversion of the water reflectance signal into SPM concentration. This relationship is reproduced based on independent field optical measurements. It is successfully applied to a selection of MODIS satellite data which allow estimating fluxes at the river mouth and monitoring the extension and dynamics of the Mackenzie River surface plume in 2009, 2010 and 2011. Good agreement is obtained with field observations representative of the whole water column in the river delta zone where terrigenous SPM is mainly constrained (out of short periods of maximum river outflow). Most of the seaward export of SPM is observed to occur within the west side of the river mouth. Future work will require the validation of the developed SPM regional algorithm based on match-ups with field measurements, then the routine application to ocean colour satellite data in order to better estimate the fluxes and fate of SPM and POC delivered by the Mackenzie River to the Arctic Ocean
A SWIR based algorithm to retrieve total suspended matter in extremely turbid waters
In ocean colour remote sensing, the use of Near Infra Red (NIR) spectral bands for the retrieval of Total Suspended Matter (TSM) concentration in turbid and highly turbid waters has proven to be successful. In extremely turbid waters (TSMN 100 mgLâ1) however, these bands are less sensitive to increases in TSM. Here it is proposed to use Short Wave Infra Red (SWIR) spectral bands between 1000 and 1300 nm for these extreme cases. This SWIR spectral region is subdivided into two regions, SWIR-I (1000 nm to 1200 nm) and SWIR-II (1200 nm to 1300 nm) which correspond to local minima in the pure water absorption spectrum. For both spectral regions the water reïŹectance signal was measured in situ with an ASD spectrometer in three different extremely turbid estuarine sites: Scheldt (Belgium), Gironde (France), and RĂo de la Plata (Argentina), along with the TSMconcentration.A measurable water reïŹectance was observed for all sites in SWIR-I, while in the SWIR-II region the signal was not signiïŹcant compared to the Signal-to-Noise Ratio (SNR) of current Ocean Colour (OC) sensors. For the spectral band at 1020 nm (present in Ocean and Land Colour Instrument ? OLCI, onboard Sentinel-3) and at 1071 nm, an empirical single band TSM algorithm is deïŹned which is valid for both the Gironde and Scheldt estuarine sites. This means that a single algorithm can be applied for both sites without expensive recalibration.The relationship between TSM and SWIR reïŹectance at 1020 and 1071 nm is linear and did not show any saturation for the concentrations measured here (up to 1400 mg Lâ1), while saturation was observed for the NIR wavelengths, as expected. Hence, for extremely turbid waters it is advised to switch from NIR to SWIR-I wavelengths to estimate TSM concentration. This was demonstrated for an airborne hyperspectral dataset (Airborne Prism Experiment, APEX) from the Gironde estuary having several spectral bands in the SWIR-I. The empirical single band SWIR TSM algorithm was applied to the atmospherically corrected scene providing a TSM concentration map of the Gironde from mouth to more upstream with concentrations expected in this region ranging from a few to several hundreds mg Lâ1. These results, i.e. the existence of a single relationship for the Scheldt and Gironde, not showing any decrease of sensitivity, highlights the importance of having SWIR bands in future ocean colour sensors for studying extremely turbid rivers, coastal areas and estuaries in the world. A further implication of these results is that there is a TSMlimit for application of atmospheric correction algorithms which assume zero SWIR marine reïŹectance. That limit is deïŹned here as function of wavelength and sensor noise level.Fil: Knaeps, E.. Flemish Institute for Technological Research (VITO); BĂ©lgicaFil: Ruddick, K. G.. Flemish Institute for Technological Research ; BĂ©lgicaFil: Doxaran, D.. Laboratoire d; FranciaFil: Dogliotti, Ana InĂ©s. Consejo Nacional de InvestigaciĂłnes CientĂficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Instituto de AstronomĂa y FĂsica del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de AstronomĂa y FĂsica del Espacio; ArgentinaFil: Nechad, B.. Royal Belgian Institute for Natural Sciences (RBINS); BĂ©lgicaFil: Raymaekers, D.. Flemish Institute for Technological Research; BĂ©lgicaFil: Sterckx, S.. Flemish Institute for Technological Research; BĂ©lgic
Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data
The Changjiang (Yangtze) estuarine and coastal waters are characterized by suspended sediments over a wide range of concentrations from 20 to 2,500 mg l-1. Suspended sediment plays important roles in the estuarine and coastal system and environment. Previous algorithms for satellite estimates of suspended sediment concentration (SSC) showed a great limitation in that only low to moderate concentrations (up to 50 mg l-1) could be reliably estimated. In this study, we developed a semi-empirical radiative transfer (SERT) model with physically based empirical coefficients to estimate SSC from MERIS data over turbid waters with a much wider range of SSC. The model was based on the KubelkaâMunk two-stream approximation of radiative transfer theory and calibrated using datasets from in situ measurements and outdoor controlled tank experiments. The results show that the sensitivity and saturation level of remote-sensing reflectance to SSC are dependent on wavelengths and SSC levels. Therefore, the SERT model, coupled with a multi-conditional algorithm scheme adapted to satellite retrieval of wide-range SSC, was proposed. Results suggest that this method is more effective and accurate in the estimation of SSC over turbid water
Patterns of suspended particulate matter across the continental margin in the Canadian Beaufort Sea during summer
The particulate beam attenuation coefficient at 660 nm,
cp(660), was measured in conjunction with properties of suspended
particle assemblages in August 2009 within the Canadian Beaufort Sea
continental margin, a region heavily influenced by freshwater and sediment
discharge from the Mackenzie River, but also by sea ice melt. The mass
concentration of suspended particulate matter (SPM) ranged from 0.04 to 140 g mâ3, its composition varied from mineral to organic dominated, and the
median particle diameter determined over the range 0.7â120 ”m varied
from 0.78 to 9.45 ”m, with the fraction of particles <1 ”m in
surface waters reflecting the degree influenced by river water. Despite this
range in particle characteristics, a strong relationship between SPM and
cp(660) was found and used to determine SPM distributions across
the shelf based on measurements of cp(660) taken during summer
seasons of 2004, 2008, and 2009. SPM spatial patterns on the stratified shelf
reflected the vertically sheared two-layer estuarine circulation and SPM
sources (i.e., fluvial inputs, bottom resuspension, and biological
productivity). Along-shelf winds generated lateral Ekman flows, isopycnal
movements, and upwelling or downwelling at the shelf break. Cross-shelf
transects measured during three summers illustrate how sea ice meltwater
affects river plume extent, while the presence of meltwater on the shelf was
associated with enhanced near-bottom SPM during return flow of upwelled
Pacific-origin water. SPM decreased sharply past the shelf break with further
transport of particulate matter occurring near the bottom and in interleaving
nepheloid layers. These findings expand our knowledge of particle
distributions in the Beaufort Sea controlled by river discharge, sea ice, and
wind, each of which is sensitive to weather and climate variations.</p
Seasonal dynamics of dissolved organic matter in the Mackenzie Delta, Canadian Arctic waters
Increasing air temperatures and associated permafrost thaw in Arctic river watersheds, such as the Mackenzie River catchment, are directly affecting the aquatic environment. As a consequence, the quantity and the quality of dissolved organic carbon (DOC) that is transported via the Mackenzie River into the Arctic Ocean is expected to change. Particularly in these remote permafrost regions of the Arctic, monitoring of terrigenous organic carbon fluxes is insufficient and knowledge of distribution and fate of organic carbon when released to the coastal waters is remarkably lacking. Despite its poorly evaluated performance in Arctic coastal waters, Satellite Ocean Colour Remote Sensing (SOCRS) remains a powerful tool to complement monitoring of land-ocean DOC fluxes, detect their trends, and help in understanding their propagation in the Arctic Ocean.
In this study, we use in situ and SOCRS data to show the strong seasonal dynamics of the Mackenzie River plume and the spatial distribution of associated terrigenous DOC on the Beaufort Sea Shelf for the first time. Using a dataset collected during an extensive field campaign in 2019, the performance of three commonly-used atmospheric correction (AC) algorithms and two available colored dissolved organic matter (CDOM) retrieval algorithms were evaluated using the Ocean and Land Colour Instrument (OLCI). Our results showed that in optically-complex Arctic coastal waters the Polymer AC algorithm performed the best. For the retrieval of CDOM, the gsmA algorithm (Mean Percentage Error (MPE) = 35.7%) showed slightly more consistent results compared to the ONNS algorithm (MPE = 37.9%). By merging our measurements with published datasets, the newly-established DOC-CDOM relationship for the Mackenzie-Beaufort Sea region allowed estimations of DOC concentrations from SOCRS across the entire fluvial-marine transition zone with an MPE of 20.5%. Finally, we applied SOCRS with data from the Sentinel-3 OLCI sensor to illustrate the seasonal variation of DOC concentrations in the surface waters of the Beaufort Sea on a large spatial scales and high frequency throughout the entire open water period. Highest DOC concentrations and largest lateral extent of the plume were observed in spring right after the Mackenzie River ice break-up indicating that the freshet was the main driver of plume propagation and DOC distribution on the shelf. Satellite-derived images of surface water DOC concentration placed the in situ observations into a larger temporal and spatial context and revealed a strong seasonal variability in transport pathways of DOC in the Mackenzie- Beaufort Sea region
Ecosystem function and particle flux dynamics across the Mackenzie Shelf (Beaufort Sea, Arctic Ocean): an integrative analysis of spatial variability and biophysical forcings
A. Forest et al. -- 78 pages, 18 figures, 6 tablesA better understanding of how environmental changes affect organic matter fluxes in Arctic marine ecosystems is sorely needed. Here, we combine mooring times-series, ship-based measurements and remote-sensing to assess the variability and forcing factors of vertical fluxes of particulate organic carbon (POC) across the Mackenzie Shelf in 2009. We developed a geospatial model of these fluxes to proceed to an integrative analysis of their biophysical determinants in summer. Flux data were obtained with sediment traps and via a regional empirical algorithm applied to particle size-distributions (17 classes from 0.08â4.2 mm) measured by an Underwater Vision Profiler 5. Redundancy analyses and forward selection of abiotic/biotic parameters, linear trends, and spatial structures (i.e. principal coordinates of neighbor matrices, PCNM), were conducted to partition the variation of POC flux size-classes. Flux variability was explained at 69.5 % by the addition of a linear temporal trend, 7 significant PCNM and 9 biophysical variables. The interaction of all these factors explained 27.8 % of the variability. The first PCNM canonical axis (44.4 % of spatial variance) reflected a shelf-basin gradient controlled by bottom depth and ice concentration (p < 0.01), but a complex assemblage of fine-to-broad scale patterns was also identified. Among biophysical parameters, bacterial production and northeasterly wind (upwelling-favorable) were the two strongest explanatory variables (r2 cum. = 0.37), suggesting that bacteria were associated with sinking material, which was itself partly linked to upwelling-induced productivity. The second most important spatial structure corresponded actually to the two areas where shelf break upwelling is known to occur under easterlies. Copepod biomass was negatively correlated (p < 0.05) with vertical POC fluxes, implying that metazoans played a significant role in the regulation of export fluxes. The low fractal dimension of settling particles (1.26) and the high contribution (~94 %) of fast-sinking small aggregates (<1 mm; 20â30 m dâ1) to the mass fluxes suggested that settling material across the region was overall fluffy, porous, and likely resulting from the aggregation of marine detritus, gel-like substances and ballast minerals. Our study demonstrates that vertical POC fluxes in Arctic shelf systems are spatially complex, sensitive to environmental forcings, and determined by both physicochemical mechanisms and food web functioning. In conclusion, we hypothesize that the incorporation of terrestrial matter into the Beaufort Sea food web could be catalyzed by bacteria via the incorporation of dissolved terrestrial carbon liberated through the photo-cleavage and/or hydrolysis of land-derived POC interweaved with marine aggregatesThis work would not have been possible without the professional and enthusiastic assistance of the officers and crew members of the CCGS Amundsen. We express gratitude to L. Prieur and C. Marec for their help in the deployment of the CTD-rosette and for the onboard processing of UVP5 data. We thank J. Martin, J. Gagnon, A. Mignot and M. Gosselin for sharing the chlorophyll data in order to post-calibrate the fluorometer. 5 We thank P. Guillot for the validation of physical data. We thank M. Fortier, K. LÂŽevesque and J. Ehn for the organization of the fieldwork, workshops and for support at sea. This study was conducted as part of the Malina Scientific Program funded by ANR (Agence nationale de la recherche), INSU-CNRS (Institut national des sciences de lâunivers â Centre national de la recherche scientifique), CNES (Centre national dâeÂŽtudes spatiales) and ESA (European Space Agency). Additional support from ArcticNet (a Network of Centres of Excellence of Canada) and from the ArcticNet-Imperial Oil Research Collaboration was welcomed and appreciated. The IAEA is grateful to the Government of the Principality of Monaco for the support provided to its Environment Laboratories. This work is a joint contribution to the Malina Project and to the research 15 programs of QueÂŽbec-OceÂŽan, ArcticNet, the Takuvik Joint U. Laval/CNRS Laboratory, the Arctic in Rapid Transition (ART) Initiative, to the Canada Research Chair on the Response of Marine Arctic Ecosystems to ClimateWarming, and to the Canada Excellence Research Chair (CERC) in Remote Sensing of Canadaâs New Arctic FrontierPeer reviewe
Impact of the spatial resolution of satellite remote sensing sensors in the quantification of total suspended sediment concentration: A case study in turbid waters of Northern Western Australia
The impact of anthropogenic activities on coastal waters is a cause of concern because such activities add to the total suspended sediment (TSS) budget of the coastal waters, which have negative impacts on the coastal ecosystem. Satellite remote sensing provides a powerful tool in monitoring TSS concentration at high spatiotemporal resolution, but coastal managers should be mindful that the satellite-derived TSS concentrations are dependent on the satellite sensor's radiometric properties, atmospheric correction approaches, the spatial resolution and the limitations of specific TSS algorithms. In this study, we investigated the impact of different spatial resolutions of satellite sensor on the quantification of TSS concentration in coastal waters of northern Western Australia. We quantified the TSS product derived from MODerate resolution Imaging Spectroradiometer (MODIS)-Aqua, Landsat-8 Operational Land Image (OLI), and WorldView-2 (WV2) at native spatial resolutions of 250 m, 30 m and 2 m respectively and coarser spatial resolution (resampled up to 5 km) to quantify the impact of spatial resolution on the derived TSS product in different turbidity conditions. The results from the study show that in the waters of high turbidity and high spatial variability, the high spatial resolution WV2 sensor reported TSS concentration as high as 160 mg L-1 while the low spatial resolution MODIS-Aqua reported a maximum TSS concentration of 23.6 mg L-1. Degrading the spatial resolution of each satellite sensor for highly spatially variable turbid waters led to variability in the TSS concentrations of 114.46%, 304.68% and 38.2% for WV2, Landsat-8 OLI and MODIS-Aqua respectively. The implications of this work are particularly relevant in the situation of compliance monitoring where operations may be required to restrict TSS concentrations to a pre-defined limit
The HYPERMAQ dataset: bio-optical properties of moderately to extremely turbid waters
This is the final version. Available from Copernicus Publications via the DOI in this record.âŻData availability:
Data are available from Lavigne et al. (2022), hosted at
PANGAEA (http://www.pangaea.de, last access: 24 October
2022) under the https://doi.org/10.1594/PANGAEA.944313.Because of the large diversity of case 2 waters ranging
from extremely absorbing to extremely scattering waters and the complexity
of light transfer due to external terrestrial inputs, retrieving main
biogeochemical parameters such as chlorophyll-a or suspended particulate
matter concentration in these waters is still challenging. By providing
optical and biogeochemical parameters for 180 sampling stations with
turbidity and chlorophyll-a concentration ranging from 1 to 700âFNU and from
0.9 to 180âmgâmâ3 respectively, the HYPERMAQ dataset will contribute to
a better description of marine optics in optically complex water bodies and
can help the scientific community to develop algorithms. The HYPERMAQ
dataset provides biogeochemical parameters (i.e. turbidity, pigment and chlorophyll-a concentration, suspended particulate matter), apparent optical
properties (i.e. water reflectance from above water measurements) and inherent optical properties (i.e. absorption and attenuation coefficients)
from six different study areas. These study areas include large estuaries
(i.e. the Rio de la Plata in Argentina, the Yangtze estuary in China, and the Gironde estuary in France), inland (i.e. the Spuikom in Belgium and
ChascomĂčs lake in Argentina), and coastal waters (Belgium).Belgian Federal Science Policy Office (STEREO III)Belgian Federal Science Policy Office (STEREO III)Fonds Wetenschappelijk Onderzoek (Flemish LifeWatch BE programme grant
- âŠ