434 research outputs found

    Ares V and Future Very Large Launch Vehicles to Enable Major Astronomical Missions

    Get PDF
    The current NASA architecture intended to return humans to the lunar surface includes the Ares V cargo launch vehicle, which is planned to be available within a decade. The capabilities designed for Ares V would permit an 8.8-m diameter, 55 mT payload to be carried to Sun-Earth L1,2 locations. That is, this vehicle could launch very large optical systems to achieve major scientific goals that would otherwise be very difficult. For example, an 8-m monolith UV/visual/IR telescope appears able to be launched to a Sun-Earth L2 location. Even larger apertures that are deployed or assembled seem possible. Alternatively, multiple elements of a spatial array or two or three astronomical observatories might be launched simultaneously. Over the years, scientists and engineers have been evaluating concepts for astronomical observatories that use future large launch vehicles. In this presentation, we report on results of a recent workshop held at NASA Ames Research Center that have improved understanding of the science goals that can be achieved using Ares V. While such a vehicle uniquely enables few of the observatory concepts considered at the workshop, most have a baseline mission that can be flown on existing or near-future vehicles. However, the performance of the Ares V permits design concepts (e.g., large monolithic mirrors) that reduce complexity and risk

    Influence of rootstocks on pistachio (Pistacia vera L.) water relations

    Get PDF
    Pistachio potted plants budded on three different rootstocks were submitted to water stress during 28 days with the aim of studying their water relations and physiological responses. Water stress resulted in an accented drop of stem water potential and leaf conductance. Nonetheless, pistachio plants showed a great capacity to contrast drought effects by the recourse to osmotic adjustment mechanisms. Regarding rootstocks, UCB-I results being the less adapted rootstock to conditions of water stress

    Saving irrigation water as a tool to increase pomegranate fruit price and enhance the bioactive compound content

    Get PDF
    The non-climateric character of pomegranate (P. granatum) fruit underlines the importance of determining the optimum harvest time to improve fruit quality. The effect of irrigation withholding during 6, 15, 25 and 36 d before harvest was evaluated in order to clarify whether fruit ripening is critical or non-critical from the yield, fruit characteristics and composition point of view. The results indicated that this phenological period is critical because irrigation is essential during most of this phenological period to achieve maximum yield. However, a 6 d of irrigation restriction at the end of ripening period can be used as a tool to come early harvest time, saves irrigation water, enhances the bioactive compounds (anthocyanins, phenolic compounds, punicalagin and ellagic acid) and increases the price of the fruit without affecting marketable yield and fruit size

    Regulated deficit irrigation in table olive trees during a sensitive period

    Get PDF
    Olive tree is one of the most important irrigated fruit at Spain (around 400.000 ha). The water needs in olive orchard are greater than the water availability. Therefore, deficit conditions are common at the field. The aim of this work is to study a regulated deficit irrigation (RDI) scheduling based on midday stem water potential (Y) that limits irrigation before harvest. The experiment was performed at La Hampa experimental farm (Coria del río, Seville, Spain) in 45 years-old olive (cv Manzanillo). Three irrigation treatments in a complete randomized block design were performed during 2014.This research was supported by the Spanish Ministerio de Economía y Competitividad (MINECO), (AGL2013-45922-C2-1-R).Peer Reviewe

    Limitations and usefulness of maximum daily shrinkage (MDS) and trunk growth rate (TGR) indicators in the irrigation scheduling of table olive trees

    Get PDF
    8 páginas.-- 7 figuras.-- 2 tablas.-- 32 referenciasMaximum daily trunk shrinkage (MDS) is the most popular indicator derived from trunk diameter fluctuations in most fruit trees and has been reported to be one of the earliest signs in the detection of water stress. However, in some species such as olive trees (. Olea europaea L.), MDS does not usually change in water stress conditions and trunk growth rate (TGR) has been suggested as better indicator. Most of this lack of sensitivity to drought conditions has been related to the relationship between the MDS and the water potential. This curvilinear relationship produces an uncertain zone were great variations of water potential do not imply any changes of MDS. The MDS signal, the ratio between measured MDS and estimated MDS with full irrigation, has been thought to be a better indicator than MDS, as it reduces the effect of the environment. On the other hand, though literature results suggest an effect of environment in TGR values, there are not clear relationship between this indicator and meteorological data. The aims of this work are, on one hand, to study the improvements of the baseline approach in the MDS signal and, on the other, study the influence of several meteorological variables in TGR. Three years' data from an irrigation experiment were used in to carry out the MDS analysis and six years' data for full irrigated trees during pit hardening period were used for TGR study. The comparison between MDS vs. water potential and MDS signal vs. water potential presented a great scattering in both relationships. Values of MDS signal between 1.1 and 1.4 were always identified with moderate water stress conditions (-1.4 to -2. MPa of water potential). However, since this MDS signal values are around the maximum in the curvilineal relationship with water potential, greater values of MDS signal (in the range of 1.1-1.4) were not necessary lower values of water potential. In addition, during low fruit load seasons MDS signal was not an accurate indicator. On the other hand, absolute values of several climatological measurements were not significantly related with TGR. Only daily increments explain part of the variations of TGR in full irrigated trees. In all the data analysed, the daily increment of average vapour pressure deficit was the best indicator related with TGR. The increase of this indicator decreased TGR values. In addition, the agreement between this indicator and TGR was affected for fruit load. Great yield seasons decrease the influence of VPD increment in TGR.This research was supported by the Spanish Ministerio de Ciencia e Innovación (MICINN), (AGL2010-19201-CO4-03). Thanks are due to J. Rodriguez and A. Montero for help with field measurements.Peer reviewe

    Operational forecasting of daily summer maximum and minimum temperatures in the Valencia Region

    Get PDF
    Extreme-temperature events have a great impact on human society. Thus, knowledge of summer temperatures can be very useful both for the general public and for organizations whose workers operate in the open. An accurate forecasting of summer maximum and minimum temperatures could help to predict heatwave conditions and permit the implementation of strategies aimed at minimizing the negative effects that high temperatures have on human health. The objective of this work is to evaluate the skill of the regional atmospheric and modelling system (RAMS) model in determining daily summer maximum and minimum temperatures in the Valencia Region. For this, we have used the real-time configuration of this model currently running at the Centro de Estudios Ambientales de Mediterráneo Foundation. This operational system is run twice a day, and both runs have a 3-day forecast range. To carry out the verification of the model in this work, the information generated by the system has been broken into individual simulation days for a specific daily run of the model. Moreover, we have analysed the summer forecast period from 1 June to 31 August for 2007, 2008, 2009 and 2010. The results indicate good agreement between observed and simulated maximum temperatures, with RMSE in general near 2 °C both for coastal and inland stations. For this parameter, the model shows a negative bias around −1.5 °C in the coast, while the opposite trend is observed inland. In addition, RAMS also shows good results in forecasting minimum temperatures for coastal locations, with bias lower than 1 °C and RMSE below 2 °C. However, the model presents some difficulties for this parameter inland, where bias higher than 3 °C and RMSE of about 4 °C have been found. Besides, there is little difference in both temperatures forecasted within the two daily RAMS cycles and that RAMS is very stable in maintaining the forecast performance at least for three forecast days

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance
    corecore