14 research outputs found

    Microplastics in Namibian river sediments – a first evaluation

    Get PDF
    The African continent is rarely the focus of microplastics research, although the ubiquity of microplastics in the environment is undisputed and still increasing. Due to the high production and use of plastic products and the partial lack of recycling systems in many parts of the African continent, it can be assumed that microplastic particles are already present in limnic and terrestrial ecosystems. Few studies, mainly from South Africa and the Northern African region, show a contamination with microplastics, especially in marine environments. This study aims to explore the presence and composition of microplastics in fluvial sediments of the major catchments in Namibia with a regional focus on the Iishana system in Northern Namibia, as one of the most densely populated areas in the country. In March 2019 and March 2021, at the end of the rainy seasons, sediments from the Iishana system and of the largest river catchments were sampled. Extraction was performed by density separation using the Microplastic Sediment Separator (MPSS) with the separation solution sodium chloride (density of 1.20 g/cm3). The particle size was determined by filtration and fractionation, and the polymer type by measurement with ATR-FTIR spectroscopy (minimum particle size 0.3 mm). Microplastics were found in the sediments of each river system, most of the particles in the Iishana system (average of 13.2 particles/kg dry weight). The perennial, the ephemeral rivers, and the Iishana system are similar concerning polymer type and particle size. Polyethylene and polypropylene were the dominant polymer types. Most of the particles were found in the size fractions 0.3 – 0.5 mm and 0.5 – 1.0 mm. The particles were found mainly as fragments and films, the majority transparent and brown

    Twenty-three unsolved problems in hydrology (UPH) – a community perspective

    Get PDF
    This paper is the outcome of a community initiative to identify major unsolved scientific problems in hydrology motivated by a need for stronger harmonisation of research efforts. The procedure involved a public consultation through on-line media, followed by two workshops through which a large number of potential science questions were collated, prioritised, and synthesised. In spite of the diversity of the participants (230 scientists in total), the process revealed much about community priorities and the state of our science: a preference for continuity in research questions rather than radical departures or redirections from past and current work. Questions remain focussed on process-based understanding of hydrological variability and causality at all space and time scales. Increased attention to environmental change drives a new emphasis on understanding how change propagates across interfaces within the hydrological system and across disciplinary boundaries. In particular, the expansion of the human footprint raises a new set of questions related to human interactions with nature and water cycle feedbacks in the context of complex water management problems. We hope that this reflection and synthesis of the 23 unsolved problems in hydrology will help guide research efforts for some years to come

    Deposition and in-situ translocation of microplastics in floodplain soils

    No full text
    The microplastic (MP) contamination of oceans, freshwaters, and soils has become one of the major challenges within the Anthropocene. MP is transported in large quantities through river systems from land to sea and is deposited in river sediments and floodplains. As part of the river system, floodplains and their soils are known for their sink function with respect to sediments, nutrients, and pollutants. However, the questions remain: To what extend does this deposition occur in floodplain soils? Which spatial distribution of MP accumulations, resulting from possible environmental drivers, can be found? The present study analyzes the spatial distribution of large (L-MP, 2000–1000 ÎŒm) and medium (M-MP, 1000–500 ÎŒm) MP particles in floodplain soils of the Lahn River (Germany). Based on a geospatial sampling concept, the MP contents in floodplain soils are investigated down to a depth of 2 m through a combined method approach, including MP analyses, soil surveys, properties, and sediment dating. The analysis of the plastic particles was carried out by density separation, visual fluorescence identification, and ATR-FTIR analysis. In addition, grain-size analyses and 210Pb and 137Cs dating were performed to reconstruct the MP deposition conditions. The results prove a more frequent accumulation of MP in upper floodplain soils (0–50 cm) deposited by flood dynamics since the 1960s than in subsoils. The first MP detection to a depth of 2 m and below recent (>1960) sediment accumulation indicates in-situ vertical transfer of mobile MP particles through natural processes (e.g., preferential flow, bioturbation). Furthermore, the role of MP as a potential marker of the Anthropocene is assessed. This study advances our understanding of the deposition and relocation of MP at the aquatic-terrestrial interface
    corecore