1,530 research outputs found

    Soglie sonore: la canzone nelle scene e nelle sigle delle serie tv.

    Get PDF
    Lo sviluppo qualitativo e quantitativo della Grande serialità nell’ultimo decennio ha ricollocato e risemantizzato il ruolo della musica come componente diegetica imprescindibile per costruire, colorare emotivamente e rappresentare un universo narrativo. Le modalità con cui avviene la fusione dell’elemento sonoro con quello visivo e narrativo nella serialità sono molteplici, ciascuna delle quali propone un punto di vista rappresentativo della capacità dell’elemento sonoro di costituirsi come soggetto narrativo ed estetico autonomo all’interno di una narrazione complessa come quella proposta dalla Grande serialità. In particolare, due luoghi risultano significativi - e forse ancora scarsamente indagati - nel tracciare il perimetro della cooperazione tra immagini e musica nella serialità recente: le sigle e l’inserimento di canzoni pop nel tessuto delle puntate. Nel primo caso, la complessità della serialità televisiva attuale trova nella sigla un luogo in cui rileggere e risemantizzare il potente concetto genettiano di soglia, operando scelte stilistiche, estetiche e narrative che agiscono nella direzione della sempre ricercata ”qualità”. Nel secondo caso, l’inserimento di canzoni (e artisti) pop nella serialità televisiva ne mette in luce la matrice industriale, ed evidenzia il legame strettissimo - e spesso non esplicitato - con le logiche e le esigenze economiche e promozionali dell’industria musicale. Il saggio si propone di ricostruire la fisionomia dell’attuale relazione fra musica pop e grande serialità tv, rintracciandone le coordinate produttive ed estetiche attraverso l’analisi di alcuni casi emblematici

    Imidazole in Aqueous Solution: Hydrogen Bond Interactions and Structural Reorganization with Concentration

    Get PDF
    The structural and dynamic properties of imidazole in aqueous solution have been studied by means of classical and ab initio molecular dynamics simulations. We developed a new force field for the imidazole molecule with improved modeling of the electrostatic interactions, specifically tailored to address the well-known drawbacks of existing force fields based on the atomic fractional charge approach. To this end, we reparametrized the charge distribution on the heterocyclic ring, introducing an extra site accounting for the lone pair on the deprotonated nitrogen. The accuracy of the model in describing the hydrogen bond pattern in the aqueous solvent has been confirmed by comparing the classical results on imidazole–water interactions to accurate Car–Parrinello molecular dynamics simulations. It reproduces satisfactorily the experimental water/octanol partition coefficient of imidazole, as well as the structure of the imidazole molecular crystal. The force field has been finally applied to simulate aqueous solutions at various imidazole concentrations to obtain information on both imidazole–water and imidazole–imidazole interactions, providing a description of the different molecular arrangements in solution

    Spartito Preso

    Get PDF
    Mostra organizzata dall' Assessorato della Cultura di Firenze e presentata nell'ambito della rassegna 'Settembre Musica' in collaborazione con gli Istituti di Storia dell'Arte dell' Università degli Studi di Torino

    Performance of the LHCb muon system

    Full text link
    The performance of the LHCb Muon system and its stability across the full 2010 data taking with LHC running at ps = 7 TeV energy is studied. The optimization of the detector setting and the time calibration performed with the first collisions delivered by LHC is described. Particle rates, measured for the wide range of luminosities and beam operation conditions experienced during the run, are compared with the values expected from simulation. The space and time alignment of the detectors, chamber efficiency, time resolution and cluster size are evaluated. The detector performance is found to be as expected from specifications or better. Notably the overall efficiency is well above the design requirementsComment: JINST_015P_1112 201

    Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires

    Get PDF
    The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of ttt\overline{t}, W+bbW+b\overline{b} and W+ccW+c\overline{c} is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 ±\pm 0.02 \mbox{fb}^{-1}. The WW bosons are reconstructed in the decays WνW\rightarrow\ell\nu, where \ell denotes muon or electron, while the bb and cc quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions

    LHCb upgrade software and computing : technical design report

    Get PDF
    This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis

    Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era

    Get PDF
    The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034 cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier

    Measurement of the top quark forward-backward production asymmetry and the anomalous chromoelectric and chromomagnetic moments in pp collisions at √s = 13 TeV

    Get PDF
    Abstract The parton-level top quark (t) forward-backward asymmetry and the anomalous chromoelectric (d̂ t) and chromomagnetic (μ̂ t) moments have been measured using LHC pp collisions at a center-of-mass energy of 13 TeV, collected in the CMS detector in a data sample corresponding to an integrated luminosity of 35.9 fb−1. The linearized variable AFB(1) is used to approximate the asymmetry. Candidate t t ¯ events decaying to a muon or electron and jets in final states with low and high Lorentz boosts are selected and reconstructed using a fit of the kinematic distributions of the decay products to those expected for t t ¯ final states. The values found for the parameters are AFB(1)=0.048−0.087+0.095(stat)−0.029+0.020(syst),μ̂t=−0.024−0.009+0.013(stat)−0.011+0.016(syst), and a limit is placed on the magnitude of | d̂ t| < 0.03 at 95% confidence level. [Figure not available: see fulltext.

    Search for new particles in events with energetic jets and large missing transverse momentum in proton-proton collisions at root s=13 TeV

    Get PDF
    A search is presented for new particles produced at the LHC in proton-proton collisions at root s = 13 TeV, using events with energetic jets and large missing transverse momentum. The analysis is based on a data sample corresponding to an integrated luminosity of 101 fb(-1), collected in 2017-2018 with the CMS detector. Machine learning techniques are used to define separate categories for events with narrow jets from initial-state radiation and events with large-radius jets consistent with a hadronic decay of a W or Z boson. A statistical combination is made with an earlier search based on a data sample of 36 fb(-1), collected in 2016. No significant excess of events is observed with respect to the standard model background expectation determined from control samples in data. The results are interpreted in terms of limits on the branching fraction of an invisible decay of the Higgs boson, as well as constraints on simplified models of dark matter, on first-generation scalar leptoquarks decaying to quarks and neutrinos, and on models with large extra dimensions. Several of the new limits, specifically for spin-1 dark matter mediators, pseudoscalar mediators, colored mediators, and leptoquarks, are the most restrictive to date.Peer reviewe
    corecore