114 research outputs found

    Tetrahedrites: Prospective Novel Thermoelectric Materials

    Get PDF
    Since their discovery in 1845, tetrahedrites, a class of minerals composed of relatively earth‐abundant and nontoxic elements, have been extensively studied in mineralogy and geology. Despite a large body of publications on this subject, their transport properties had not been explored in detail. The discovery of their interesting high‐temperature thermoelectric properties and peculiar thermal transport has led to numerous experimental and theoretical studies over the last 4 years with the aim of better understanding the relationships between the crystal, electronic, and thermal properties. Tetrahedrites provide a remarkable example of anharmonic system giving rise to a temperature dependence of the lattice thermal conductivity that mirrors that of amorphous compounds. Here, we review the progress of research on the transport properties of tetrahedrites, highlighting the main experimental and theoretical results that have been obtained so far and the important issues and questions that remain to be investigated

    Reduced phase space of heat-carrying acoustic phonons in single-crystalline InTe

    Get PDF
    Chalcogenide semiconductors and semimetals are a fertile class of efficient thermoelectric materials, which, in most cases, exhibit very low lattice thermal conductivity κph despite lacking a complex crystal structure such as the tetragonal binary compound InTe. Our measurements of κph(T) in single-crystalline InTe along the c axis show that κph exhibits a smooth temperature dependence upon cooling to about 50 K, the temperature below which a strong rise typical for dielectric compounds is observed. Using a combination of first-principles calculations, inelastic neutron scattering (INS), and low-temperature specific heat and transport properties measurements on single-crystalline InTe, we show that the phonon spectrum exhibits well-defined acoustic modes, the energy dispersions of which are constrained to low energies due to distributions of dispersionless, optical modes, which are responsible for a broad double peak structure in the low-temperature specific heat. The latter are assigned to the dynamics of In+ cations in tunnels formed by edge-sharing (In3+Te42−)− tetrahedra chains, the atomic thermal displacement parameters of which, probed as a function of temperature by means of single-crystal x-ray diffraction, suggest the existence of a complex energy potential. Indeed, the In+-weighted optical modes are not observed by INS, which is ascribed to the anharmonic broadening of their energy profiles. While the low κph value of 1.2Wm−1K−1 at 300 K originates from the limited energy range available for acoustic phonons, we show that the underlying mechanism is specific to InTe and argue that it is likely related to the presence of local disorder induced by the In+ sit

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere

    Synthesis, structural and chemical characterizations and transport properties of Mo3Sb7 based compounds

    No full text
    Les préoccupations environnementales actuelles ont conduit à un regain d’intérêt pour la conversion d'énergie par effets thermoélectriques au cours de ces 20 dernières années. Le challenge lié à cette technologie consiste à découvrir des matériaux qui possèdent à la fois une faible conductivité thermique, une forte conductivité électrique et un fort pouvoir thermoélectrique. Les travaux présentés dans ce mémoire se sont orientés vers l'étude de phases cristallines complexes à base de Mo3Sb7. Contrôler finement les propriétés électriques et thermiques de ces matériaux par le biais de substitutions appropriées et relier les propriétés physiques aux propriétés structurales et électroniques ont été au coeur de ces travaux de recherche. Des résultats significatifs ont ainsi pu être obtenus tant au niveau de la synthèse et de la caractérisation physico-chimique qu'au niveau des propriétés magnétiques et de transport. En particulier, nous avons pu mettre en évidence les propriétés exotiques du composé Mo3Sb7 dont la compréhension s'est révélée indispensable pour l'étude des propriétés de transport des matériaux substitués ternaires et quaternaires. Les différentes possibilités de substitution ont alors permis d'améliorer de façon substantielle les performances thermoélectriques du composé Mo3Sb7 et ont, de ce fait, conduit à la découverte de nouveaux matériaux surpassant les meilleurs matériaux connus à ce jour (Si-Ge) et utilisés sur la gamme 900 - 1200 K dans des applications en génération d'électricitéDue to current environmental concerns, a resurgence of interest in thermoelectricity have been witnessed by the last 20 years. The challenge raised by this technology lies in identifying materials that display low thermal conductivity as well as both high electrical conductivity and thermopower. The work presented in this manuscript deals with a thorough study on molybdenum-antimony based complex crystalline structure. To finely control the thermal and electrical properties of these compounds through judicious substitutions and to link up physical and structural properties were at the heart of this in-depth study. Not only did we obtain outstanding results regarding the synthesis and both the chemical and structural characterizations but we also discovered intriguing magnetic and transport properties. Particularly, we emphasized the exotic properties exhibited by the binary Mo3Sb7 compound whose a deep understanding were essential to study the transport properties of the ternary and quaternary alloys. The different substitutions we have considered were found to substantially improve the thermoelectric properties of the Mo3Sb7 compound and thus, led to the synthesis of new prospective thermoelectric materials that surpass the best compounds discovered up-to-now (Si-Ge) and used in power generation applications in the 900 – 1200 K temperature rang

    Synthèse, caractérisation physico-chimique et propriétés de transport de composés de type Mo3Sb7

    No full text
    Due to current environmental concerns, a resurgence of interest in thermoelectricity have been witnessed by the last 20 years. The challenge raised by this technology lies in identifying materials that display low thermal conductivity as well as both high electrical conductivity and thermopower. The work presented in this manuscript deals with a thorough study on molybdenum-antimony based complex crystalline structure. To finely control the thermal and electrical properties of these compounds through judicious substitutions and to link up physical and structural properties were at the heart of this in-depth study. Not only did we obtain outstanding results regarding the synthesis and both the chemical and structural characterizations but we also discovered intriguing magnetic and transport properties. Particularly, we emphasized the exotic properties exhibited by the binary Mo3Sb7 compound whose a deep understanding were essential to study the transport properties of the ternary and quaternary alloys. The different substitutions we have considered were found to substantially improve the thermoelectric properties of the Mo3Sb7 compound and thus, led to the synthesis of new prospective thermoelectric materials that surpass the best compounds discovered up-to-now (Si-Ge) and used in power generation applications in the 900 1200 K temperature rangeLes préoccupations environnementales actuelles ont conduit à un regain d'intérêt pour la conversion d'énergie par effets thermoélectriques au cours de ces 20 dernières années. Le challenge lié à cette technologie consiste à découvrir des matériaux qui possèdent à la fois une faible conductivité thermique, une forte conductivité électrique et un fort pouvoir thermoélectrique. Les travaux présentés dans ce mémoire se sont orientés vers l'étude de phases cristallines complexes à base de Mo3Sb7. Contrôler finement les propriétés électriques et thermiques de ces matériaux par le biais de substitutions appropriées et relier les propriétés physiques aux propriétés structurales et électroniques ont été au coeur de ces travaux de recherche. Des résultats significatifs ont ainsi pu être obtenus tant au niveau de la synthèse et de la caractérisation physico-chimique qu'au niveau des propriétés magnétiques et de transport. En particulier, nous avons pu mettre en évidence les propriétés exotiques du composé Mo3Sb7 dont la compréhension s'est révélée indispensable pour l'étude des propriétés de transport des matériaux substitués ternaires et quaternaires. Les différentes possibilités de substitution ont alors permis d'améliorer de façon substantielle les performances thermoélectriques du composé Mo3Sb7 et ont, de ce fait, conduit à la découverte de nouveaux matériaux surpassant les meilleurs matériaux connus à ce jour (Si-Ge) et utilisés sur la gamme 900 - 1200 K dans des applications en génération d'électricit

    Place de la biologie moléculaire dans le diagnostic de l'amibiase

    No full text
    STRASBOURG-Medecine (674822101) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Synthèse, caractérisation physico-chimique et propriétés de transport de composés de type Mo3Sb7

    No full text
    Les préoccupations environnementales actuelles ont conduit à un regain d intérêt pour la conversion d'énergie par effets thermoélectriques au cours de ces 20 dernières années. Le challenge lié à cette technologie consiste à découvrir des matériaux qui possèdent à la fois une faible conductivité thermique, une forte conductivité électrique et un fort pouvoir thermoélectrique. Les travaux présentés dans ce mémoire se sont orientés vers l'étude de phases cristallines complexes à base de Mo3Sb7. Contrôler finement les propriétés électriques et thermiques de ces matériaux par le biais de substitutions appropriées et relier les propriétés physiques aux propriétés structurales et électroniques ont été au coeur de ces travaux de recherche. Des résultats significatifs ont ainsi pu être obtenus tant au niveau de la synthèse et de la caractérisation physico-chimique qu'au niveau des propriétés magnétiques et de transport. En particulier, nous avons pu mettre en évidence les propriétés exotiques du composé Mo3Sb7 dont la compréhension s'est révélée indispensable pour l'étude des propriétés de transport des matériaux substitués ternaires et quaternaires. Les différentes possibilités de substitution ont alors permis d'améliorer de façon substantielle les performances thermoélectriques du composé Mo3Sb7 et ont, de ce fait, conduit à la découverte de nouveaux matériaux surpassant les meilleurs matériaux connus à ce jour (Si-Ge) et utilisés sur la gamme 900 - 1200 K dans des applications en génération d'électricitéDue to current environmental concerns, a resurgence of interest in thermoelectricity have been witnessed by the last 20 years. The challenge raised by this technology lies in identifying materials that display low thermal conductivity as well as both high electrical conductivity and thermopower. The work presented in this manuscript deals with a thorough study on molybdenum-antimony based complex crystalline structure. To finely control the thermal and electrical properties of these compounds through judicious substitutions and to link up physical and structural properties were at the heart of this in-depth study. Not only did we obtain outstanding results regarding the synthesis and both the chemical and structural characterizations but we also discovered intriguing magnetic and transport properties. Particularly, we emphasized the exotic properties exhibited by the binary Mo3Sb7 compound whose a deep understanding were essential to study the transport properties of the ternary and quaternary alloys. The different substitutions we have considered were found to substantially improve the thermoelectric properties of the Mo3Sb7 compound and thus, led to the synthesis of new prospective thermoelectric materials that surpass the best compounds discovered up-to-now (Si-Ge) and used in power generation applications in the 900 1200 K temperature rangeNANCY-INPL-Bib. électronique (545479901) / SudocSudocFranceF

    Issues and opportunities from Peltier effect in functionally-graded colusites: from SPS temperature modeling to enhanced thermoelectric performances

    No full text
    International audienceThe quaternary sulphide V-Sn colusite, Cu 26 V 2 Sn 6 S 32 , is one of the most promising costefficient thermoelectric materials to date because of the low toxicity, wide availability and low cost of the composing elements. Recent studies have demonstrated the potential of this environmentally-friendly material and its transport properties are now well understood. In the present work, we take the next step of producing large quantities of optimised V-Sn colusite using industrial-grade precursors and investigating the effect of Spark Plasma Sintering (SPS) in the production of large cylindrical pucks of up to 30 mm in diameter and 10 mm in thickness. In the process, we identified and solved several key issues including the generation of temperature gradients during SPS, porosity and defect formation. The generation of radial and axial temperature gradients within the sample during SPS has been modeled using modified Fourier and Ohm laws and confirmed experimentally thanks to the T SPS-dependent transport properties of V-Sn colusite and EDS analysis. We demonstrate that large pucks of colusite with enhanced thermoelectric properties can be produced using a combination of SPS and High-temperature Isostatic Press (HIP). Overall, our work experimentally and theoretically demonstrates that the production of both homogeneous and functionally-graded bulk materials can be easily up-scaled through a careful control of the SPS conditions

    Issues and opportunities from Peltier effect in functionally-graded colusites: from SPS temperature modeling to enhanced thermoelectric performances

    No full text
    International audienceThe quaternary sulphide V-Sn colusite, Cu 26 V 2 Sn 6 S 32 , is one of the most promising costefficient thermoelectric materials to date because of the low toxicity, wide availability and low cost of the composing elements. Recent studies have demonstrated the potential of this environmentally-friendly material and its transport properties are now well understood. In the present work, we take the next step of producing large quantities of optimised V-Sn colusite using industrial-grade precursors and investigating the effect of Spark Plasma Sintering (SPS) in the production of large cylindrical pucks of up to 30 mm in diameter and 10 mm in thickness. In the process, we identified and solved several key issues including the generation of temperature gradients during SPS, porosity and defect formation. The generation of radial and axial temperature gradients within the sample during SPS has been modeled using modified Fourier and Ohm laws and confirmed experimentally thanks to the T SPS-dependent transport properties of V-Sn colusite and EDS analysis. We demonstrate that large pucks of colusite with enhanced thermoelectric properties can be produced using a combination of SPS and High-temperature Isostatic Press (HIP). Overall, our work experimentally and theoretically demonstrates that the production of both homogeneous and functionally-graded bulk materials can be easily up-scaled through a careful control of the SPS conditions

    Thermoelectric Borides: Review and Future Perspectives

    No full text
    Abstract The conversion of waste heat into electricity plays a vital role in energy harvesting since conventional non‐renewable energy sources have been rapidly approaching the limit of utilization. The thermoelectric (TE) technology relies on converting temperature difference (or waste heat) into electricity or vice versa. The performance of TE materials is gauged by zT = S2T/ρκ, where S, ρ, κ, and T represent the Seebeck coefficient, the electrical resistivity, the total thermal conductivity, and the absolute temperature, respectively. Boron‐based compounds are considered refractory materials due to their high melting points and advanced chemical and mechanical stability. Besides high thermal stability, many borides exhibit intrinsically low thermal conductivity. The discovery of good TE efficiency in boron carbides, where unexpectedly high Seebeck coefficients (S(T) ≈ 250 µVK−1) are observed at high charge carrier densities (≈1021 cm−3), has induced an intense curiosity for the TE properties of other boron‐based compounds. Intermetallic borides with high boron content (>65 at%) are of particular interest among all known TE materials due to their great potential in TE generators, which can operate under extreme environmental conditions (T > 1000 K). This article reviews the TE properties of borides and state‐of‐art TE materials upon boron/borides doping
    corecore