491 research outputs found

    Group Visits: Promoting Adherence to Diabetes Guidelines

    Get PDF
    BACKGROUND: Current diabetes management guidelines offer blueprints for providers, yet type 2 diabetes control is often poor in disadvantaged populations. The group visit is a new treatment modality originating in managed care for efficient service delivery to patients with chronic health problems. Group visits offer promise for delivering care to diabetic patients, as visits are lengthier and can be more frequent, more organized, and more educational. OBJECTIVE: To evaluate the effect of group visits on clinical outcomes, concordance with 10 American Diabetes Association (ADA) guidelines [American Diabetes Association, Diabetes Care, 28:S4–36, 2004] and 3 United States Preventive Services Task Force (USPSTF) cancer screens [U.S. Preventive Services Task Force, http://www.ahrq.gov/clinic/uspstf/resource.htm, 2003]. RESEARCH DESIGN AND METHODS: A 12-month randomized controlled trial of 186 diabetic patients comparing care in group visits with care in the traditional patient–physician dyad. Clinical outcomes (HbA1c, blood pressure [BP], lipid profiles) were assessed at 6 and 12 months and quality of care measures (adherence to 10 ADA guidelines and 3 USPSTF cancer screens) at 12 months. RESULTS: At both measurement points, HbA1c, BP, and lipid levels did not differ significantly for patients attending group visits versus those in usual care. At 12 months, however, patients receiving care in group visits exhibited greater concordance with ADA process-of-care indicators (p < .0001) and higher screening rates for cancers of the breast (80 vs. 68%, p = .006) and cervix (80 vs 68%, p = .019). CONCLUSIONS: Group visits can improve the quality of care for diabetic patients, but modifications to the content and style of group visits may be necessary to achieve improved clinical outcomes

    Identifying priorities in methodological research using ICD-9-CM and ICD-10 administrative data: report from an international consortium

    Get PDF
    BACKGROUND: Health administrative data are frequently used for health services and population health research. Comparative research using these data has been facilitated by the use of a standard system for coding diagnoses, the International Classification of Diseases (ICD). Research using the data must deal with data quality and validity limitations which arise because the data are not created for research purposes. This paper presents a list of high-priority methodological areas for researchers using health administrative data. METHODS: A group of researchers and users of health administrative data from Canada, the United States, Switzerland, Australia, China and the United Kingdom came together in June 2005 in Banff, Canada to discuss and identify high-priority methodological research areas. The generation of ideas for research focussed not only on matters relating to the use of administrative data in health services and population health research, but also on the challenges created in transitioning from ICD-9 to ICD-10. After the brain-storming session, voting took place to rank-order the suggested projects. Participants were asked to rate the importance of each project from 1 (low priority) to 10 (high priority). Average ranks were computed to prioritise the projects. RESULTS: Thirteen potential areas of research were identified, some of which represented preparatory work rather than research per se. The three most highly ranked priorities were the documentation of data fields in each country's hospital administrative data (average score 8.4), the translation of patient safety indicators from ICD-9 to ICD-10 (average score 8.0), and the development and validation of algorithms to verify the logic and internal consistency of coding in hospital abstract data (average score 7.0). CONCLUSION: The group discussions resulted in a list of expert views on critical international priorities for future methodological research relating to health administrative data. The consortium's members welcome contacts from investigators involved in research using health administrative data, especially in cross-jurisdictional collaborative studies or in studies that illustrate the application of ICD-10

    Men's passage to fatherhood: an analysis of the contemporary relevance of transition theory

    Get PDF
    This paper presents a theoretical analysis of men's experiences of pregnancy, birth and early fatherhood. It does so using a framework of ritual transition theory and argues that despite its earlier structural-functionalist roots, transition theory remains a valuable framework, illuminating contemporary transitions across the life course. The paper discusses the historical development of transition or ritual theory and, drawing upon data generated during longitudinal ethnographic interviews with men undergoing the transition to fatherhood, analyses its relevance in understanding contemporary experiences of fatherhood

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Change in Allosteric Network Affects Binding Affinities of PDZ Domains: Analysis through Perturbation Response Scanning

    Get PDF
    The allosteric mechanism plays a key role in cellular functions of several PDZ domain proteins (PDZs) and is directly linked to pharmaceutical applications; however, it is a challenge to elaborate the nature and extent of these allosteric interactions. One solution to this problem is to explore the dynamics of PDZs, which may provide insights about how intramolecular communication occurs within a single domain. Here, we develop an advancement of perturbation response scanning (PRS) that couples elastic network models with linear response theory (LRT) to predict key residues in allosteric transitions of the two most studied PDZs (PSD-95 PDZ3 domain and hPTP1E PDZ2 domain). With PRS, we first identify the residues that give the highest mean square fluctuation response upon perturbing the binding sites. Strikingly, we observe that the residues with the highest mean square fluctuation response agree with experimentally determined residues involved in allosteric transitions. Second, we construct the allosteric pathways by linking the residues giving the same directional response upon perturbation of the binding sites. The predicted intramolecular communication pathways reveal that PSD-95 and hPTP1E have different pathways through the dynamic coupling of different residue pairs. Moreover, our analysis provides a molecular understanding of experimentally observed hidden allostery of PSD-95. We show that removing the distal third alpha helix from the binding site alters the allosteric pathway and decreases the binding affinity. Overall, these results indicate that (i) dynamics plays a key role in allosteric regulations of PDZs, (ii) the local changes in the residue interactions can lead to significant changes in the dynamics of allosteric regulations, and (iii) this might be the mechanism that each PDZ uses to tailor their binding specificities regulation

    Effective Caspase Inhibition Blocks Neutrophil Apoptosis and Reveals Mcl-1 as Both a Regulator and a Target of Neutrophil Caspase Activation

    Get PDF
    Human tissue inflammation is terminated, at least in part, by the death of inflammatory neutrophils by apoptosis. The regulation of this process is therefore key to understanding and manipulating inflammation resolution. Previous data have suggested that the short-lived pro-survival Bcl-2 family protein, Mcl-1, is instrumental in determining neutrophil lifespan. However, Mcl-1 can be cleaved following caspase activity, and the possibility therefore remains that the observed fall in Mcl-1 levels is due to caspase activity downstream of caspase activation, rather than being a key event initiating apoptosis in human neutrophils

    Non-Lytic, Actin-Based Exit of Intracellular Parasites from C. elegans Intestinal Cells

    Get PDF
    The intestine is a common site for invasion by intracellular pathogens, but little is known about how pathogens restructure and exit intestinal cells in vivo. The natural microsporidian parasite N. parisii invades intestinal cells of the nematode C. elegans, progresses through its life cycle, and then exits cells in a transmissible spore form. Here we show that N. parisii causes rearrangements of host actin inside intestinal cells as part of a novel parasite exit strategy. First, we show that N. parisii infection causes ectopic localization of the normally apical-restricted actin to the basolateral side of intestinal cells, where it often forms network-like structures. Soon after this actin relocalization, we find that gaps appear in the terminal web, a conserved cytoskeletal structure that could present a barrier to exit. Reducing actin expression creates terminal web gaps in the absence of infection, suggesting that infection-induced actin relocalization triggers gap formation. We show that terminal web gaps form at a distinct stage of infection, precisely timed to precede spore exit, and that all contagious animals exhibit gaps. Interestingly, we find that while perturbations in actin can create these gaps, actin is not required for infection progression or spore formation, but actin is required for spore exit. Finally, we show that despite large numbers of spores exiting intestinal cells, this exit does not cause cell lysis. These results provide insight into parasite manipulation of the host cytoskeleton and non-lytic escape from intestinal cells in vivo
    corecore