3,726 research outputs found

    Projections of climate-driven changes in tuna vertical habitat based on species-specific differences in blood oxygen affinity

    Get PDF
    Oxygen concentrations are hypothesized to decrease in many areas of the ocean as a result of anthropogenically driven climate change, resulting in habitat compression for pelagic animals. The oxygen partial pressure, pO(2), at which blood is 50% saturated (P-50) is a measure of blood oxygen affinity and a gauge of the tolerance of animals for low ambient oxygen. Tuna species display a wide range of blood oxygen affinities (i.e., P-50 values) and therefore may be differentially impacted by habitat compression as they make extensive vertical movements to forage on subdaily time scales. To project the effects of end-of-the-century climate change on tuna habitat, we calculate tuna P-50 depths (i.e., the vertical position in the water column at which ambient pO(2) is equal to species-specific blood P-50 values) from 21st century Earth System Model (ESM) projections included in the fifth phase of the Climate Model Intercomparison Project (CMIP5). Overall, we project P-50 depths to shoal, indicating likely habitat compression for tuna species due to climate change. Tunas that will be most impacted by shoaling are Pacific and southern bluefin tunas-habitat compression is projected for the entire geographic range of Pacific bluefin tuna and for the spawning region of southern bluefin tuna. Vertical shifts in P-50 depths will potentially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiology and environmental conditions, we provide a mechanistic basis to project the effects of anthropogenic climate change on tuna habitats

    Discrete and fuzzy dynamical genetic programming in the XCSF learning classifier system

    Full text link
    A number of representation schemes have been presented for use within learning classifier systems, ranging from binary encodings to neural networks. This paper presents results from an investigation into using discrete and fuzzy dynamical system representations within the XCSF learning classifier system. In particular, asynchronous random Boolean networks are used to represent the traditional condition-action production system rules in the discrete case and asynchronous fuzzy logic networks in the continuous-valued case. It is shown possible to use self-adaptive, open-ended evolution to design an ensemble of such dynamical systems within XCSF to solve a number of well-known test problems

    Retrograde semaphorin-plexin signalling drives homeostatic synaptic plasticity.

    Get PDF
    Homeostatic signalling systems ensure stable but flexible neural activity and animal behaviour. Presynaptic homeostatic plasticity is a conserved form of neuronal homeostatic signalling that is observed in organisms ranging from Drosophila to human. Defining the underlying molecular mechanisms of neuronal homeostatic signalling will be essential in order to establish clear connections to the causes and progression of neurological disease. During neural development, semaphorin-plexin signalling instructs axon guidance and neuronal morphogenesis. However, semaphorins and plexins are also expressed in the adult brain. Here we show that semaphorin 2b (Sema2b) is a target-derived signal that acts upon presynaptic plexin B (PlexB) receptors to mediate the retrograde, homeostatic control of presynaptic neurotransmitter release at the neuromuscular junction in Drosophila. Further, we show that Sema2b-PlexB signalling regulates presynaptic homeostatic plasticity through the cytoplasmic protein Mical and the oxoreductase-dependent control of presynaptic actin. We propose that semaphorin-plexin signalling is an essential platform for the stabilization of synaptic transmission throughout the developing and mature nervous system. These findings may be relevant to the aetiology and treatment of diverse neurological and psychiatric diseases that are characterized by altered or inappropriate neural function and behaviour

    The long and the short of it: long-styled florets are associated with higher outcrossing rate in Senecio vulgaris and result from delayed selfpollen germination

    Get PDF
    The research reported in this article was funded in part by the Natural Environment Research Council under grants: GR3/6203A - Male competition and outcrossing rate in a hermaphrodite plant. GR9/1782A – Genomic analysis of wild hybrid derivatives of Senecio squalidus x S. vulgaris using in situ hybridization.Background: It has been reported that some plants of the self-compatible species, Senecio vulgaris, produce capitula containing long-styled florets which fail to set seed when left to self-pollinate, although readily set seed when self-pollinated by hand. Aims: To determine if production of long-styled florets is associated with higher outcrossing rate in S. vulgaris, and whether long-styles occur in non-pollinated florets, whereas short-styles are present in self-pollinated florets. Methods: The frequency of long-styled florets was compared in the radiate and non-radiate variants of S. vulgaris, known to exhibit higher and lower outcrossing rates, respectively. In addition, style length was compared in emasculated florets that were either self-pollinated or left non-pollinated. Results: Long-styled florets were more frequent in the higher outcrossing radiate variant. Following emasculation, long styles occurred in non-pollinated florets, while short styles were present in self-pollinated florets. The two variants did not differ in style length within the non-pollinated or within the self-pollinated floret categories. Conclusions: A high frequency of long-styled florets is associated with higher outcrossing rate in S. vulgaris and results from delayed self-pollination and pollen germination on stigmas.Publisher PDFPublisher PDFPeer reviewe

    Participatory analysis for adaptation to climate change in Mediterranean agricultural systems: possible choices in process design (versão Pre Print)

    Get PDF
    There is an increasing call for local measures to adapt to climate change, based on foresight analyses in collaboration with actors. However, such analyses involve many challenges, particularly because the actors concerned may not consider climate change to be an urgent concern. This paper examines the methodological choices made by three research teams in the design and implementation of participatory foresight analyses to explore agricultural and water management options for adaptation to climate change. Case studies were conducted in coastal areas of France, Morocco, and Portugal where the groundwater is intensively used for irrigation, the aquifers are at risk or are currently overexploited, and a serious agricultural crisis is underway. When designing the participatory processes, the researchers had to address four main issues: whether to avoid or prepare dialogue between actors whose relations may be limited or tense; how to select participants and get them involved; how to facilitate discussion of issues that the actors may not initially consider to be of great concern; and finally, how to design and use scenarios. In each case, most of the invited actors responded and met to discuss and evaluate a series of scenarios. Strategies were discussed at different levels, from farming practices to aquifer management. It was shown that such participatory analyses can be implemented in situations which may initially appear to be unfavourable. This was made possible by the flexibility in the methodological choices, in particular the possibility of framing the climate change issue in a broader agenda for discussion with the actors

    Does the revised cardiac risk index predict cardiac complications following elective lung resection?

    Get PDF
    Background: Revised Cardiac Risk Index (RCRI) score and Thoracic Revised Cardiac Risk Index (ThRCRI) score were developed to predict the risks of postoperative major cardiac complications in generic surgical population and thoracic surgery respectively. This study aims to determine the accuracy of these scores in predicting the risk of developing cardiac complications including atrial arrhythmias after lung resection surgery in adults. Methods: We studied 703 patients undergoing lung resection surgery in a tertiary thoracic surgery centre. Observed outcome measures of postoperative cardiac morbidity and mortality were compared against those predicted by risk. Results: Postoperative major cardiac complications and supraventricular arrhythmias occurred in 4.8% of patients. Both index scores had poor discriminative ability for predicting postoperative cardiac complications with an area under receiver operating characteristic (ROC) curve of 0.59 (95% CI 0.51-0.67) for the RCRI score and 0.57 (95% CI 0.49-0.66) for the ThRCRI score. Conclusions: In our cohort, RCRI and ThRCRI scores failed to accurately predict the risk of cardiac complications in patients undergoing elective resection of lung cancer. The British Thoracic Society (BTS) recommendation to seek a cardiology referral for all asymptomatic pre-operative lung resection patients with > 3 RCRI risk factors is thus unlikely to be of clinical benefit
    corecore