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Abstract

Oxygen concentrations are hypothesized to decrease in many areas of the ocean as

a result of anthropogenically driven climate change, resulting in habitat compression

for pelagic animals. The oxygen partial pressure, pO2, at which blood is 50% satu-

rated (P50) is a measure of blood oxygen affinity and a gauge of the tolerance of

animals for low ambient oxygen. Tuna species display a wide range of blood oxygen

affinities (i.e., P50 values) and therefore may be differentially impacted by habitat

compression as they make extensive vertical movements to forage on subdaily time

scales. To project the effects of end-of-the-century climate change on tuna habitat,

we calculate tuna P50 depths (i.e., the vertical position in the water column at which

ambient pO2 is equal to species-specific blood P50 values) from 21st century Earth

System Model (ESM) projections included in the fifth phase of the Climate Model

Intercomparison Project (CMIP5). Overall, we project P50 depths to shoal, indicating

likely habitat compression for tuna species due to climate change. Tunas that will be

most impacted by shoaling are Pacific and southern bluefin tunas—habitat compres-

sion is projected for the entire geographic range of Pacific bluefin tuna and for the

spawning region of southern bluefin tuna. Vertical shifts in P50 depths will poten-

tially influence resource partitioning among Pacific bluefin, bigeye, yellowfin, and

skipjack tunas in the northern subtropical and eastern tropical Pacific Ocean, the

Arabian Sea, and the Bay of Bengal. By establishing linkages between tuna physiol-

ogy and environmental conditions, we provide a mechanistic basis to project the

effects of anthropogenic climate change on tuna habitats.

K E YWORD S

bigeye, bluefin, CMIP5, deoxygenation, hypoxia, skipjack, Thunnus, yellowfin

1 | INTRODUCTION

Many pelagic animal species cross steep temperature and oxygen

gradients during their daily vertical migrations. Reduced ambient

oxygen levels (i.e., hypoxia) at depth limit the vertical movements of

tunas in some regions depending on species-specific hypoxia toler-

ance (e.g., Brill, 1994; Gilly, Beman, Litvin, & Robison, 2013; Koslow,

Goericke, Lara-Lopez, & Watson, 2011; Schaefer, Fuller, & Block,

2009; Stramma, Schmidtko, Levin, & Johnson, 2010; Stramma et al.,

2011). Climate models project warmer temperatures and lower oxy-

gen concentrations in the pelagic realms of the world’s oceans by

2100 (Bopp et al., 2013; Ciais et al., 2014; Rhein et al., 2014); and

these effects have been referred to as “habitat compression” (Prince

& Goodyear, 2007; Prince et al., 2010). Habitat compression may
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have pervasive effects on marine ecosystems by altering predator–

prey and competitive interactions (e.g., Gallo & Levin, 2016; Gilly

et al., 2013; Lehodey et al., 2011; Stramma et al., 2010).

Tunas are large predators that often make extensive vertical

movements (e.g., Block et al., 2001, 2011; Brill et al., 1999; Holland,

Brill, & Chang, 1990; Howell, Hawn, & Polovina, 2010; Musyl et al.,

2003; Schaefer & Fuller, 2007, 2010; Schaefer, Fuller, & Block, 2011;

Walli et al., 2009) to forage (Pusineri, Chancollon, Ringelstein, &

Ridoux, 2008; Young et al., 2010). Tunas exhibit different behaviors

when tracking prey vertically in the water column (Schaefer et al.,

2009). The typical characteristic behavior for bigeye tuna is to remain

in the surface water at night when the deep scattering layer organisms

are at the surface and follow the deep scattering layer organisms to

deeper depths just above the oxygen minimum layers during the day

(Schaefer & Fuller, 2010; Schaefer et al., 2009). When at deeper

depths, bigeye tuna repetitively return to shallower depths because

they cannot remain in cold, hypoxic conditions for the entire day

(Schaefer & Fuller, 2010; Schaefer et al., 2009). Yellowfin and skipjack

tunas remain in the surface waters during both night and day (Schae-

fer & Fuller, 2007; Schaefer et al., 2011). They make forays to deeper

depths during the day to forage in the deep scattering layer when

there are no other sources of food at the surface (Schaefer & Fuller,

2007; Schaefer et al., 2011). However, they can only remain at deeper

depths for brief periods because they are not hypoxia tolerant (Schae-

fer & Fuller, 2007; Schaefer et al., 2011). These foraging behaviors

influence frequency of vertical habitat usage by different tunas.

Multiple tuna species are sympatric (Figure 1), but analyses of

prey composition in the water column, tuna gut contents, and forag-

ing depths indicate that the ability to tolerate temperature and oxy-

gen levels at depth is critical for niche partitioning (Bernal,

Sepulveda, Musyl, & Brill, 2010; Bertrand, Bard, & Josse, 2002;

Olson et al., 2016; Potier et al., 2004; Varghese, Somvanshi, & Dalvi,

2014; Young et al., 2010). Niche partitioning may be less critical for

decreasing direct competition among tunas because they are fished

throughout the global ocean (Pons et al., 2017). Prey abundances

have increased as predation rates have decreased due to fishing,

thereby decreasing competition among the highest trophic levels in

marine food webs (Baum & Worm, 2009; Essington et al., 2002).

Tuna populations are relatively robust to the effects of exploitation

(Schindler, Essington, Kitchell, Boggs, & Hilborn, 2002). Therefore, if

tunas are more sustainably fished in the future, then they may be in

direct competition with each other unless there is niche partitioning

so ecological interactions should be considered.

Blood oxygen affinity is one of the primary determinants of

hypoxia tolerance of fish (Farrell & Richards, 2009; Mandic, Todg-

ham, & Richards, 2009; Wells, 2009). It is generally quantified as

P50, which is the partial pressure of oxygen (pO2) at which blood is

50% saturated. Blood with a high affinity for oxygen has a low P50,

and animals with blood with a low P50 are more hypoxia tolerant. A

potential trade-off for an animal with high oxygen affinity blood is

slow oxygen off-loading at tissues (Yang, Lai, Graham, & Somero,

1992). Highly active animals need fast off-loading of oxygen at mus-

cles, for example, to maintain fast swimming speeds. Oxygen binding

to hemoglobin may be either an exothermic or endothermic reaction

(i.e., the heat of oxygenation may be either negative or positive,

respectively) (Hochachka & Somero, 2002). In the former, higher

temperatures reduce oxygen affinity (i.e., increase P50) because heat

is released when oxygen binds to the blood pigment. In the latter,

higher temperatures increase oxygen affinity (i.e., reduce P50)

because heat is absorbed when oxygen binds to the blood pigment.

For some tuna species, heat is neither absorbed nor released during

blood oxygen binding (the apparent heat of oxygenation, DH0�0)

due to the presence of multiple forms of hemoglobin—a characteris-

tic which makes their blood oxygen affinity temperature indepen-

dent (Rossi-Fanelli & Antonini, 1960; Wood, 1980). Tunas have

species-specific blood oxygen affinities and DH0 values; the former

ranging from 2.1 to 5.8 kPa and the latter from �17 to 27 kJ mol

(Brill & Bushnell, 1991, 2006; Clark, Seymour, Wells, & Frappell,

2008; Lilly, Bonaventura, Lipnick, & Block, 2015; Lowe, Brill, & Cou-

sins, 2000). The data are from different studies, and the reported

species-specific differences may result from differences in experi-

mental protocols. Differences in P50 and DH0 have, however, been

found among very closely related species measured using the same

experimental protocols in the same laboratory (e.g., Brill & Bushnell,

1991; Lowe et al., 2000; Mandic et al., 2009), we therefore posit

that differences in the blood oxygen binding characteristics among

the tunas result from species-specific physiological adaptations.

Mechanistic analysis helps reveal regional and temporal patterns

in tunas’ habitat and vertical movement (e.g., Horodysky, Cooke, &

Brill, 2015; Horodysky, Cooke, Graves, & Brill, 2016; Lehodey et al.,

2011). Physiological thresholds for blood oxygen binding have been

mapped in the ocean as the P50 depth (Mislan, Dunne, & Sarmiento,

2015). The P50 depth is the shallowest depth at which pO2 is equal to

F IGURE 1 Tuna species richness in the global ocean (IUCN,
2011, 2014). The map includes skipjack (Katsuwonus pelamis),
yellowfin (Thunnus albacares), southern bluefin (Thunnus maccoyii),
bigeye (Thunnus obesus), Pacific bluefin (Thunnus orientalis), Atlantic
bluefin (Thunnus thynnus), albacore (Thunnus alalunga), blackfin
(Thunnus atlanticus), and longtail (Thunnus tonggol) tunas. There are
no tuna species present in grey colored areas of the ocean.
Competitive interactions and/or niche partitioning are likely to occur
in areas with multiple species present
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species-specific blood P50. We use P50 depth because P50 is a primary

determinant of hypoxia tolerance (Mandic et al., 2009), and, there-

fore, P50 depth provides a mechanistic assessment of habitat suitabil-

ity and zonation in hypoxic regions. Our objective is to project effects

of climate change on the vertical habitat of tunas using P50 depth.

Given the differences in oxygen affinity (i.e., blood P50) and tempera-

ture sensitivity of blood oxygen affinity (i.e., DH0), we test the hypoth-

esis that tuna species are highly likely to display species-specific

habitat compression due to changes in P50 depth under the effects of

climate change which will, in turn, alter the dynamics of competition

and resource partitioning among sympatric tuna species.

2 | MATERIALS AND METHODS

2.1 | Data sources

Oceanographic, physiological, and biogeographic data were used as

part of this study. The oceanographic data (monthly temperature,

oxygen concentration, and salinity on a 1° grid) were from the

National Oceanographic and Atmospheric Administration (NOAA),

National Centers for Environmental Information, World Ocean Atlas

2009 (WOA 2009) (Antonov et al., 2010; Garcia et al., 2010; Locar-

nini et al., 2009). The physiological data were from the published lit-

erature: skipjack tuna: P50 = 3 kPa, DH0 = 1.5 kJ mol�1 (Brill &

Bushnell, 1991); yellowfin: P50 = 2.7 kPa, DH0 = �0.81 kJ mol�1

(Brill & Bushnell, 1991); southern bluefin tuna: P50 = 2.1 kPa,

DH0 = 27 kJ mol�1 (Clark et al., 2008); bigeye tuna: P50 = 2.1 kPa,

DH0 = �17 kJ mol�1 (Lowe et al., 2000); Pacific bluefin tuna:

P50 = 5.8 kPa, DH0 = 13 kJ mol�1 (Lilly et al., 2015); Atlantic bluefin

tuna: P50 = 2.5 kPa, DH0 = 13 kJ mol�1 (Brill & Bushnell, 2006). P50

was measured in blood collected from animals that were captured in

the wild and brought to a laboratory facility where they were accli-

mated to particular temperatures. P50 measurements are sensitive to

changes in blood chemistry (Hochachka & Somero, 2002), particu-

larly when animals are stressed by activities such as capture from

the wild. By using measurements from laboratory acclimated animals,

we are able to make geographic assessments for baseline P50 of

unstressed tunas. Table S1 includes information on acclimation tem-

peratures, and the temperatures that were used to calculate the

apparent heat of oxygenation using the Van’t Hoff equation. Tuna

biogeographic range data were obtained from the International

Union for Conservation of Nature and Natural Resources (IUCN)

Red List of Threatened Species (IUCN, 2011, 2014). Biogeographic

range data were in vector shape files that were converted into raster

NetCDF files with a 1° grid using the Geospatial Data Abstraction

Library v. 1.11.5 (Warmerdam, 2016) and Generic Mapping Tools v.

5.4.1 for file format conversions (Wessel & Smith, 2015).

2.2 | Model results

Projections were made using temperature and oxygen concentration

results from six Earth System Models (CESM1-BGC, GFDL-ESM2G,

GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, and MPI-ESM-LR)

obtained from the Coupled Model Intercomparison Project Phase 5

(CMIP5) archive (Aumont & Bopp, 2006; Collins et al., 2011;

Dufresne et al., 2013; Dunne et al., 2012, 2013; Gent et al., 2011;

Giorgetta et al., 2013; Ilyina et al., 2013; Jones et al., 2011; Lindsay

et al., 2014; Palmer & Totterdell, 2001; Taylor, Stouffer, & Meehl,

2012). In contrast to climate models, Earth System Models include

numerical representations of the biogeochemical cycling in the ocean

in addition to numerical representations of the atmosphere, ocean,

and land. The inclusion of biogeochemical cycling in the ocean allows

them to project future changes in oxygen concentration. The climate

scenario used for this study was Representative Concentration Path-

way (RCP) 8.5 which simulates a positive radiative forcing perturba-

tion of 8.5 W m�2 in 2100 (Riahi et al., 2011). RCP 8.5 was the

most extreme scenario in CMIP5. The model results were bilinearly

interpolated to the same grid as the monthly World Ocean Atlas

2009 data, a 1° grid with 24 depths ranging from 0 to 1500 m, using

the Climate Data Operators v. 1.6.2 (Kornblueh, Mueller, & Schulz-

weida, 2013). The changes in temperature and oxygen concentration

were calculated by subtracting the 30-year average of historical

results from 1975 to 2005 from the 30-year average of the future

projections from 2070 to 2100. Thirty-year averages were used to

suppress the internal variability within the models. The calculated

changes in temperature and oxygen concentration were then added

to the average of the World Ocean Atlas 2009 data to generate pro-

jections for future conditions, thus eliminating the mean biases pre-

sent in model simulations of the baseline climate.

2.3 | Analysis

Oxygen concentrations in the data and model results were con-

verted into pO2 (i.e., oxygen partial pressures) to take into account

changes in O2 solubility resulting from differences in temperature

and salinity (Seibel, 2011). First, we converted oxygen concentration

into percent oxygen saturation using the equations from Garc�ıa and

Gordon (1992). The percent oxygen saturation was divided by 0.21

(the fractional atmospheric concentration of oxygen) to get pO2 in

atmospheres (atm); pO2 was then corrected for the hydrostatic pres-

sure at depth (Enns, Scholander, & Bradstreet, 1965). In the final

step, the units for pO2 were converted into kilopascals (kPa), the SI

Units for pressure.

Blood P50 (from hereafter referred to as simply as “P50”) shifts as

tuna move vertically if DH0 6¼ 0 because temperature in the water

column generally changes with depth, and blood is at ambient tem-

perature as it passes through the gills. We calculated blood P50 at all

depths using the van’t Hoff equation:

P50ðx;y;zÞ ¼ 10
logP50ðx;y;10Þ�

DH0(1/Tðx;y;10Þ--1/Tðx;y;zÞ)
2.303R

� �
(1)

where (x,y,z) is (longitude, latitude, depth), T(x,y,10) is the temperature

at 10 m, P50(x,y,10) is a measure of blood oxygen affinity at the fishes’

acclimation temperature, T(x,y,z) is temperatures at depth intervals

below 10 m in the water column, DH0 is the apparent heat of oxy-

genation of whole blood (i.e., the change in blood P50 with
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temperature in kJ mol�1) measured under open-system conditions

(Brill & Bushnell, 1991; Lowe et al., 2000; Wood, 1980), and R is the

universal gas constant. We assumed temperature at 10 m depth to

be the acclimation temperature (i.e., the temperature within the sur-

face layer) and based the P50(x,y,10) on measurements found in the

published literature.

We define the P50 depth as the shallowest depth in the ocean

where pO2 = P50. P50 depths were determined using NOAA Ferret

v. 7 (Manke & Smith, 2012) for all the tuna species, and mapped

using Python v. 3.5.1 (van Rossum, 2015). Animals can alter their

baseline P50 to acclimate to different environmental conditions over

the course of several days by altering concentrations of guanosine

triphosphate, GTP, and adenosine triphosphate, ATP, in the blood

(Weber & Lykkeboe, 1978). We assume the animals are acclimated

to surface conditions and forays to deeper depths are not long

enough for acclimation to a new baseline P50 to occur. The pro-

jected changes in P50 depths from the six Earth System Models were

averaged to assess the effect of climate change on tuna habitat

thickness and vertical movement patterns. Ensembling of models

allows one to take advantage of the cancelation of random (oppos-

ing) differences for an overall more robust solution among models of

otherwise equivalent skill. We assessed habitat compression based

on the changes in P50 depth over the current range of each species.

Analyses of P50 depth in the CMIP5 results were conducted for both

future pO2 and future temperature, and future pO2 and WOA 2009

temperature. We thus assess the relative impact of each variable on

projected P50 depths. The overall changes in P50 depths for the cur-

rent range of each species were summarized as boxplots using R v.

3.2.3 (The R Core Team, 2015). The code used for the analysis is

archived in Zenodo (https://doi.org/10.5281/zenodo.808742).

3 | RESULTS

3.1 | P50 depths

Tunas encounter different temperature and oxygen conditions as

they move vertically. Blood P50 therefore shifts as tunas with

DH0 6¼ 0 descend from the surface layer to depths below the ther-

mocline (Fig. S1). The direction in P50 shift is species specific. Bigeye

and southern bluefin tunas have the most exothermic (DH0 =

�17 kJ mol�1), and the most endothermic (DH0 = 27 kJ mol�1),

respectively, blood oxygen binding reactions of the tuna species. As

such, the P50 of bigeye tuna (T. obesus) decreases with depth

(Fig. S1a). This, and the low P50 of bigeye tuna blood, makes bigeye

tuna more hypoxia tolerant than other tunas at depth, while the P50

of southern bluefin tuna (T. maccoyii) increases with depth (Fig. S1b),

thus making southern bluefin tuna less tolerant of hypoxia than

other tunas at depth. Yellowfin (T. albacares) and skipjack (Katsu-

wonus pelamis) tunas have temperature-independent blood oxygen

binding reactions (DH0�0), so P50 does not shift as these tuna spe-

cies move vertically in the water column. Therefore, the hypoxia tol-

erance of these species is the same at the surface and depth.

Yellowfin, skipjack, bigeye, and southern bluefin have similar oxygen

affinity (P50 range 2.1 to 3) for the surface. However, if there is a

steep thermocline, the blood oxygen affinity of bigeye tuna is much

higher, and the blood oxygen affinity of southern bluefin is much

lower, than blood oxygen affinities of yellowfin and skipjack tunas at

deeper depths.

The geographic ranges of tuna species have varying degrees of

overlap with their P50 depth areas (Figure 2). Almost the entire geo-

graphic range of Pacific bluefin tuna has a P50 depth restriction.

Bigeye and skipjack tunas occupy geographic areas that include

areas where vertical movements are restricted by P50 depth (Fig-

ure 2). The extent of the vertical movements of Atlantic bluefin tuna

(T. thynnus) and southern bluefin tuna is not restricted by P50 depth

over most of their geographic ranges (Fig. S2). P50 depths are shal-

lowest in the tropics (Figure 2).

3.2 | P50 depth changes in the future

Climate change is projected to change P50 depths in many geo-

graphic areas and thus the depth ranges occupied by tunas (Fig-

ure 2). Figure 2 includes three tuna species, bigeye, skipjack, and

Pacific bluefin tunas, with P50 depths in large proportions of their

habitat areas. The P50 depths and habitat area of yellowfin tuna are

similar to skipjack tuna (Fig. S2). Atlantic and southern bluefin tunas

have little to no overlap between the area with P50 depths and the

habitat area (Fig. S2). The greatest changes are projected to occur in

the Northwest Pacific Ocean where P50 depths are likely to be

>200 m shallower at the edges of the geographic ranges of bigeye,

yellowfin, and skipjack tunas (Figures 2, S2). Shoaling of P50 depths

should result in a compression of the vertical habitat. In contrast,

P50 depths are projected to be deeper in the much of the tropics

(30°S to 30°N), particularly in regions where P50 depths are currently

the most shallow (Figure 2). Deeper P50 depths indicate an expan-

sion of the vertical habitat. As we note in the discussion, a caveat to

this finding of deeper P50 depths in the tropics in the future is that

trends in modeled oxygen do not agree with observations from the

eastern tropical Pacific.

Overall, the ESM’s project more vertical compression than expan-

sion of tuna habitats in the future (Figure 3). The greatest compres-

sion is projected for the habitats of tuna species with endothermic

blood oxygen binding, particularly southern bluefin tuna (Figure 3).

Although most of the habitat of southern bluefin tuna does not have

a P50 depth (Fig. S2), changes in P50 depths are projected to occur in

the spawning region (Figure 4). P50 depths of southern bluefin tuna

are projected to be 80–600 m shallower, and the P50 depth area is

projected to expand in size (Figure 4). The projected changes in P50

depths are due to either changes in temperature or oxygen in the

water column. The median P50 depth of southern bluefin tuna is pro-

jected to be 410 m shallower in the future and 180 m of the pro-

jected shift is due to temperature changes in the water column. In

contrast, temperature is projected to cause <10 m change in the

median P50 depths of yellowfin, skipjack, bigeye, and Pacific bluefin

tunas. The vertical separation between P50 depths of pairs of tuna

species is projected to change in the Pacific Ocean, Arabian Sea, and

4022 | MISLAN ET AL.
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Bay of Bengal (Figure 5). In the North Pacific Ocean and the North-

ern Tropical Pacific Ocean, the vertical separation between all pairs

of tuna species is projected to decrease. There is only a very small

area where the vertical separation between all pairs of tuna species

is projected to expand. In general, vertical separation between pairs

of tuna species is not projected to increase or decrease uniformly at

the same geographic location (Figure 5).

4 | DISCUSSION

Our results suggest that climate change will impact the vertical envi-

ronment of tunas because of species-specific differences in blood

oxygen affinity (Figure 3). The P50 depths of tunas with endothermic

blood oxygen binding reactions, Pacific and southern bluefin tunas,

are projected to be shallower in the future (Figure 3). The greatest

decreases in oxygen concentrations are occurring in the North Paci-

fic (Bopp et al., 2013), which is the habitat of Pacific bluefin tuna (T.

orientalis), a species with endothermic blood oxygen binding. Tuna

species with exothermic and temperature-independent blood oxygen

affinity also have habitats in the North Pacific including bigeye, skip-

jack, and yellowfin tunas, but in low abundance relative to tropical

regions. Interestingly, the greatest vertical compression is projected

to be just outside the northern range of these three species (Fig-

ures 2, S3). Decreases in oxygen concentrations are also projected

for the Eastern Indian Ocean where southern bluefin tuna spawn

(Bopp et al., 2013). The vertical habitat of southern bluefin tuna is

projected to be >500 m shallower in some locations in this region

(Figure 4). The underlying cause for changes in P50 depth could be

due to temperature increases shifting blood oxygen affinity (i.e., P50).

Warming in the surface ocean is projected to be faster than in the

deeper ocean, increasing the temperature gradient with depth. P50

increases as species with endothermic blood oxygen binding reac-

tions swim from the warm surface layer to cold deep depths

(Fig. S1b). Therefore, southern bluefin tuna, which has an endother-

mic blood oxygen binding reaction, is projected to reach P50 at shal-

lower depths in the future.

Multiple tuna species are sympatric in the North Pacific where

the ESMs project the greatest changes in P50 depths will occur (Fig-

ures 1 and 2). Tunas have species-specific vertical movement pat-

terns (e.g., Bernal et al., 2010; Schaefer et al., 2009). Skipjack and

yellowfin are most frequently in the upper thermocline (<100 m

depth) during both day and night and make only occasional forays

for brief periods down to deeper depths during the day (Schaefer &

Fuller, 2007; Schaefer et al., 2009, 2011). Shallower and deeper P50

depths in the future may decrease or increase, respectively, the fre-

quency with which these species can forage at deeper depths (Fig-

ure 2). Skipjack and yellowfin tunas exhibit similar vertical habitat

usage behaviors and also both have temperature-independent blood

oxygen affinities. The degree to which behaviors and physiological

(a) (b)

(c) (d)

(e) (f)

F IGURE 2 P50 depths and the
projected changes in P50 depths due to
climate change. Grey indicates locations
where there are no P50 depths. (a), (c), and
(e) are the present-day P50 depths of
bigeye, skipjack, and Pacific bluefin tuna
calculated using data from World Ocean
Atlas 2009. (b), (d), and (f) are the average
projected changes in P50 depths for bigeye,
skipjack, and Pacific bluefin tunas from the
six Earth System Models included in the
Climate Model Intercomparison Project 5.
Expansion occurs in locations where P50
depths are deeper in the future.
Compression occurs in locations where P50

depths are shallower in the future. The
stippling indicates known habitat for each
tuna species (IUCN, 2011, 2014)
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characteristics are linked will need to be investigated in a future

study. Bigeye tuna are most frequently in the upper thermocline at

night and frequently at depths deeper than 200 m during the day

from which they make regular forays to the surface layer where oxy-

gen concentrations are higher and temperatures are warmer (Schae-

fer & Fuller, 2010; Schaefer et al., 2009). A change in the P50 depth

may either influence the daytime foraging depth or alter the fre-

quency of trips to the surface layer during the day (Figure 2).

Although these behaviors are considered characteristic, bigeye tuna

occasionally dive to depths >1000 m to forage below the lower

oxycline (Schaefer et al., 2009). Changes in P50 depths could alter

the thickness of oxycline making it either easier or more difficult for

bigeye tuna to access areas below the oxycline (Figure 2).

The changes in P50 depth separations between pairs of tuna spe-

cies may lead to changes in the frequency of competitive interac-

tions, especially in deeper foraging zones (Figure 5). Both increases

and decreases in species-specific vertical movement patterns result-

ing from P50 depths are projected to occur at the same locations

between different pairs of tuna species. As a result, competition is

not projected to universally increase or decrease. The main excep-

tion is the North Pacific where projected decreases in the vertical
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F IGURE 3 Compression of P50 depths in tuna habitats projected
for the end of the century. P. bluefin and S. bluefin are Pacific and
southern bluefin tunas, respectively. The right y-axis is for S. bluefin,
which has much larger projected changes than the other species.
Tuna species with blood oxygen binding reactions that are
endothermic are projected to experience more compression than
species with blood oxygen binding reactions that are exothermic or
temperature independent. There are no boxes for Atlantic bluefin
tuna because the geographic range of this species does not overlap
with the geographic area where individuals would encounter a P50
depth during descents (Figs. S2, S3). Outliers that are greater than
1.5 times the interquartile range are not shown

F IGURE 5 Locations where the vertical separation in P50 depths
of tuna species are projected to change by more than 10 m. The
species include skipjack (K. pelamis), yellowfin (T. albacares) southern
bluefin (T. maccoyii), bigeye (T. obesus), and Pacific bluefin (T.
orientalis). Expansion: all pairwise vertical separations increase.
Mixed: pairwise vertical separations increase and decrease.
Compression: all pairwise vertical separations decrease. Competition
is projected to increase in areas with compression and decrease in
areas with expansion. For areas with mixed changes in vertical
separation, competitive interactions are projected to increase for
some pairs of species and decrease for other pairs of species

(a) (b)

F IGURE 4 P50 depths in the spawning
area of southern bluefin tuna. (a) Present-
day P50 depths based on World Ocean
Atlas (WOA) data. (b) Future projections of
P50 depths based on greenhouse gas
emissions scenario RCP 8.5. The stippling
indicates known habitat (IUCN, 2011). In
the future, the area with a P50 depth is
projected to expand south, further into the
spawning region of southern bluefin tuna.
The P50 depths are also projected to be
shallower
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separation among all pairs of tuna species indicate a potential

increase in the frequency of interactions (Figure 5). The effects of

climate change on vertical movements and distribution of tuna prey

species are also relevant for determining frequency of competitive

interactions among tuna species (Polovina, 1996). If the vertical dis-

tributions of prey species shift similarly to that of tunas, there may

be few changes in ecological interactions. Also, because fish track

environmental variables and shift the geographic centers of their

range to remain in optimal conditions (Pinsky, Worm, Fogarty, Sar-

miento, & Levin, 2013), horizontal shifts in tunas’ geographic ranges

may preempt any effects of climate change on their vertical habitats.

As fish species reorganize in a “musical chairs” of habitats, some

habitats may be excluded due to geographic range incompatibility or

increases in ecological interactions. Geographic ranges of tunas cover

much of the global ocean, so there is limited potential for tunas to

change geographic ranges without also increasing competitive inter-

actions (Figure 1).

Factors in addition to hypoxia tolerance limit the vertical extent

of tuna habitat. Atlantic bluefin tuna occupy a region where oxygen

concentrations change only minimally with depth, which is exempli-

fied by the lack of P50 depths throughout the range of this species

(Fig. S2). However, Atlantic bluefin tuna have limitations on vertical

movements (Walli et al., 2009). Tuna maintain tissues at optimal

temperatures by spending time in warmer surface waters (Brill,

Dewar, & Graham, 1994; Dewar, Graham, & Brill, 1994; Graham &

Dickson, 2001; Malte, Larsen, Musyl, & Brill, 2007), which means

that vertical movements are limited by the length of time tuna can

remain at depth before needing to return to the warmer surface

layer to get a “gulp of heat”. Another factor that limits the depths to

which tuna can descend is the effect of temperature on cardiac

function. Because of circulatory anatomy, the heart remains at ambi-

ent environmental temperature which results in a decline in cardiac

performance at colder deeper depths (Galli, Shiels, & Brill, 2009).

Bigeye tuna, which spend the most time relative to other tuna spe-

cies at deeper depths, has adaptations, including enhanced cardiac

Ca2+ cycling and stimulation using adrenaline, to maintain cardiac

performance in colder temperatures (Galli et al., 2009). While a com-

bination of these factors limits the vertical extent of tuna habitats,

the effects of climate change on oxygen concentration will have the

greatest impact of tuna vertical habitat.

Our results also suggest that blood oxygen affinity is projected

to change the spawning area for southern bluefin tuna, which is

located in the Indian Ocean off the coast of northwestern Australia

(Hobday et al., 2016). Adaptation tends to be more rapid when

directly related to reproduction, therefore, tracking changes in P50

and DH0 of southern bluefin tuna over time may provide a record of

adaptation to climate change. A key step will be to connect physio-

logical changes to gene expression and environmental changes.

Tunas have physiological and morphological differences in addition

to the differences in blood oxygen affinity (e.g., Bernal et al., 2010;

Graham, 1975). For example, Atlantic bluefin, Pacific bluefin, and

southern bluefin tunas (whose blood oxygen binding is endothermic)

do not have central vascular counter current heat exchangers (i.e.,

those formed from branches of dorsal aorta and postcardinal vein

contained within the hemal arch of the spinal column), and rely

exclusively on lateral heat exchangers to supply blood to the red

muscle fiber portions of the swimming muscles (Graham, 1975; Gra-

ham & Dickson, 2001).

We used oxygen and temperature results from Earth System

Models to project changes in tuna physiology and ecology over the

next century. Models have many uncertainties which can be reduced

by combining results from multiple models, as we did. Even so, the

temperature results were generally more robust than the oxygen

results (Bopp et al., 2013). Robustness is determined by comparing

model results to measurements over a historical period. Temperature

mean state from the models is similar to observations throughout

most of the global ocean (Bopp et al., 2013). Oxygen mean state is

similar to observations in some regions of the ocean including the

North Pacific where the greatest changes in blood oxygen binding

and competitive interactions are projected to occur (Figures 2 and 5)

(Bopp et al., 2013). The oxygen mean state is, however, much less

robust in the Eastern Tropical Pacific Ocean where P50 depths are

the shallowest (Figure 2). Recent observations show oxygen concen-

trations decreasing in the Eastern Tropical Pacific Ocean (Schmidtko,

Stramma, & Visbeck, 2017; Stramma, Johnson, Sprintall, & Mohrholz,

2008), but there were no changes in oxygen concentrations in the

model mean state for the region over the same period (Bopp et al.,

2013). Cabr�e, Marinov, Bernardello, and Bianchi (2015) found that all

the models overestimated the total volume of hypoxic water in the

Eastern Tropical Pacific because of biases in ventilation. Blood oxy-

gen affinity of tunas is not projected to change in the Eastern Tropi-

cal Pacific based on results from existing models, but this projection

could change as improvements are made to the parameterizations

for ventilation in new model versions. The measurements of blood

oxygen affinity also have uncertainties; the measurements used here

were made by different researchers, using different equipment and

procedures over a 20-year period on a small number of animals. The

limited numbers of measurements ignore potential intraspecies plas-

ticity and geographic variation in the blood oxygen affinity of various

tuna species. Furthermore, the effects of blood oxygen affinity on

vertical movement behavior and metabolic rates of tuna still need to

be determined. In summary, the projected effects of climate change

on tuna habitats are uncertain and will be further improved by a

combination of Earth System Model development and additional

measurements of blood oxygen affinity, behavior, and metabolism.

Resource managers will benefit from information on the physio-

logical mechanisms controlling habitat use when making decisions

for tuna fisheries in a changing climate (e.g., Brill & Lutcavage, 2001;

Horodysky et al., 2015, 2016; McKenzie et al., 2016). Ocean warm-

ing and changes in the depths of the oxycline could have dire conse-

quences for the movements, distribution, and abilities of tunas to

withstand various levels of fishing mortality if the frequency of com-

petitive interactions increases or prey have refuges from predation.

Our results imply that different tuna species will experience different

degrees of habitat compression. We project that Pacific and south-

ern bluefin tunas will experience the greatest habitat compression.
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Fisheries management should account for physiological differences

in the responses of tuna species to changes in the temperature and

oxygen conditions of the upper water column resulting from climate

change. As improvements to Earth System Models further decrease

uncertainties, continued efforts to link model projections of environ-

mental changes to physiological consequences will provide a more

complete picture of pelagic habitat structure over the 21st century.
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