50 research outputs found

    Releasing incompatible males drives strong suppression across populations of wild and Wolbachia-carrying Aedes aegypti in Australia

    Get PDF
    Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2018

    Get PDF
    In 2018, the dominant greenhouse gases released into Earth’s atmosphere—carbon dioxide, methane, and nitrous oxide—continued their increase. The annual global average carbon dioxide concentration at Earth’s surface was 407.4 ± 0.1 ppm, the highest in the modern instrumental record and in ice core records dating back 800 000 years. Combined, greenhouse gases and several halogenated gases contribute just over 3 W m−2 to radiative forcing and represent a nearly 43% increase since 1990. Carbon dioxide is responsible for about 65% of this radiative forcing. With a weak La Niña in early 2018 transitioning to a weak El Niño by the year’s end, the global surface (land and ocean) temperature was the fourth highest on record, with only 2015 through 2017 being warmer. Several European countries reported record high annual temperatures. There were also more high, and fewer low, temperature extremes than in nearly all of the 68-year extremes record. Madagascar recorded a record daily temperature of 40.5°C in Morondava in March, while South Korea set its record high of 41.0°C in August in Hongcheon. Nawabshah, Pakistan, recorded its highest temperature of 50.2°C, which may be a new daily world record for April. Globally, the annual lower troposphere temperature was third to seventh highest, depending on the dataset analyzed. The lower stratospheric temperature was approximately fifth lowest. The 2018 Arctic land surface temperature was 1.2°C above the 1981–2010 average, tying for third highest in the 118-year record, following 2016 and 2017. June’s Arctic snow cover extent was almost half of what it was 35 years ago. Across Greenland, however, regional summer temperatures were generally below or near average. Additionally, a satellite survey of 47 glaciers in Greenland indicated a net increase in area for the first time since records began in 1999. Increasing permafrost temperatures were reported at most observation sites in the Arctic, with the overall increase of 0.1°–0.2°C between 2017 and 2018 being comparable to the highest rate of warming ever observed in the region. On 17 March, Arctic sea ice extent marked the second smallest annual maximum in the 38-year record, larger than only 2017. The minimum extent in 2018 was reached on 19 September and again on 23 September, tying 2008 and 2010 for the sixth lowest extent on record. The 23 September date tied 1997 as the latest sea ice minimum date on record. First-year ice now dominates the ice cover, comprising 77% of the March 2018 ice pack compared to 55% during the 1980s. Because thinner, younger ice is more vulnerable to melting out in summer, this shift in sea ice age has contributed to the decreasing trend in minimum ice extent. Regionally, Bering Sea ice extent was at record lows for almost the entire 2017/18 ice season. For the Antarctic continent as a whole, 2018 was warmer than average. On the highest points of the Antarctic Plateau, the automatic weather station Relay (74°S) broke or tied six monthly temperature records throughout the year, with August breaking its record by nearly 8°C. However, cool conditions in the western Bellingshausen Sea and Amundsen Sea sector contributed to a low melt season overall for 2017/18. High SSTs contributed to low summer sea ice extent in the Ross and Weddell Seas in 2018, underpinning the second lowest Antarctic summer minimum sea ice extent on record. Despite conducive conditions for its formation, the ozone hole at its maximum extent in September was near the 2000–18 mean, likely due to an ongoing slow decline in stratospheric chlorine monoxide concentration. Across the oceans, globally averaged SST decreased slightly since the record El Niño year of 2016 but was still far above the climatological mean. On average, SST is increasing at a rate of 0.10° ± 0.01°C decade−1 since 1950. The warming appeared largest in the tropical Indian Ocean and smallest in the North Pacific. The deeper ocean continues to warm year after year. For the seventh consecutive year, global annual mean sea level became the highest in the 26-year record, rising to 81 mm above the 1993 average. As anticipated in a warming climate, the hydrological cycle over the ocean is accelerating: dry regions are becoming drier and wet regions rainier. Closer to the equator, 95 named tropical storms were observed during 2018, well above the 1981–2010 average of 82. Eleven tropical cyclones reached Saffir–Simpson scale Category 5 intensity. North Atlantic Major Hurricane Michael’s landfall intensity of 140 kt was the fourth strongest for any continental U.S. hurricane landfall in the 168-year record. Michael caused more than 30 fatalities and 25billion(U.S.dollars)indamages.InthewesternNorthPacific,SuperTyphoonMangkhutledto160fatalitiesand25 billion (U.S. dollars) in damages. In the western North Pacific, Super Typhoon Mangkhut led to 160 fatalities and 6 billion (U.S. dollars) in damages across the Philippines, Hong Kong, Macau, mainland China, Guam, and the Northern Mariana Islands. Tropical Storm Son-Tinh was responsible for 170 fatalities in Vietnam and Laos. Nearly all the islands of Micronesia experienced at least moderate impacts from various tropical cyclones. Across land, many areas around the globe received copious precipitation, notable at different time scales. Rodrigues and Réunion Island near southern Africa each reported their third wettest year on record. In Hawaii, 1262 mm precipitation at Waipā Gardens (Kauai) on 14–15 April set a new U.S. record for 24-h precipitation. In Brazil, the city of Belo Horizonte received nearly 75 mm of rain in just 20 minutes, nearly half its monthly average. Globally, fire activity during 2018 was the lowest since the start of the record in 1997, with a combined burned area of about 500 million hectares. This reinforced the long-term downward trend in fire emissions driven by changes in land use in frequently burning savannas. However, wildfires burned 3.5 million hectares across the United States, well above the 2000–10 average of 2.7 million hectares. Combined, U.S. wildfire damages for the 2017 and 2018 wildfire seasons exceeded $40 billion (U.S. dollars)

    Mozzie Science, Art +Tech 4Kids! : Science engagement for school children and communities, activating us to address the dangers of mosquito borne diseases

    No full text
    This is the project website for an Advance Queensland Grant for Science Engagement aimed at teaching school children about the dangers of mosquito disease and activating communities to address these. The website focuses on communicating and documenting the Mozzie AR Toolkit and Mozzie AR App (other project outcomes), including demonstration of the app in video, design process descriptions and public outreach activities and events

    Mozzie AR Toolkit

    No full text
    A significant concern for Australia’s health, environment and community is mosquito born diseases, which kill more people than any other living entity (Gates,2014). Limited social awareness of their breeding habitats remains an issue. This toolkit is a novel, design led solution that draws on interaction design and STEAM to engage and educate people and promote active participation with science and for science communication. It educates the community in the environmental science and health concerns surrounding mosquitoes, by engaging them through creative, physically active and digitally interactive designs. The toolkit is conceptualized for primary school student delivery and integrates with school curriculae, while elements have also been independently presented. Five elements have been designed and built for the toolkit:1/ The Mozzie AR App - an interactive app for mobile devices using Augmented Reality technology to overlay virtual mosquito habitat on the real world, with a virtual scientist “Maya” to direct enquiry; 2/ Lens case design for Ipad - by resembling a magnifying lens, this assists in the framing of the school activity as a ‘junior science detective’ as students ‘hunt for mosquitoes’3/ Mosquito life cycle activity – paper based with stickers, to accompany the app in school setting4/ Mosquito habitat hunting activity – paper based to accompany the ‘virtual scientist’ directions and findings when using the app, in the school setting. 5/ Lava fish game design activity – card with a folding ‘mosquito-predator’ activity, for school settingIn 2019 the app was presented at an interactive installation during National Science week at the QUT Cube, and at the Queensland Royal Agricultural Show (EKKA). It was also presented as part of the Mozzie AR toolkit at workshops with primary school children. The design is informed by expertise from project collaborators. It has been competitively funded by an Advance Queensland Science Engagement grant in 2019-20, the QUT Design Lab and in-kind contributions from the partners at Metro South Health, CSIRO Biosecurity and CSIRO Data 61. A media release from Qld Govt’s Hon Leeanne Enoch said “An excellent example of a project that is connecting students with scientists is QUT’s Mozzie Augmented Reality project” and quoted Seevinck about the project (Sept 2019

    MozzieAR App

    No full text
    A significant concern for Australia’s health, environment and community is mosquito born diseases, which kill more people than any other living entity(Gates,2014). Limited social awareness of their breeding habitats remains an issue. This app presents a solution that draws on interaction design and STEAM to engage and educate people and promote active participation with science and for science communication.The Mozzie AR App, designed as a part of the MozzieAR Toolkit, educates and engages through creativity. It educates the community in the environmental science and health concerns surrounding mosquitoes, by engaging them through creative, physically active and digitally interactive designs. The toolkit is conceptualized for primary school student delivery and integrates with school curriculae, while elements have also been independently presented. The Mozzie AR App is an interactive app for mobile devices that uses Augmented Reality technology to overlay virtual mosquito habitat on the real world, with a virtual scientist “Maya” to direct enquiry.In 2019 the app was presented at an interactive installation during National Science week at the Cube. It was also presented at the Queensland Royal Agricultural Show (EKKA). Finally, it was also presented as part of the Mozzie AR toolkit at workshops with primary school children. The design is informed by expertise from project collaborators. It has been competitively funded by an Advance Queensland Science Engagement grant in 2019-20, the QUT Design Lab and in-kind contributions from project partners Metro South Health, CSIRO Biosecurity and CSIRO Data 61

    <i>Culex</i>-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using <i>Wolbachia</i>

    No full text
    Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods

    Improving estimates of Fried’s Index from mating competitiveness experiments

    Get PDF
    Sterile insect technique (SIT) and incompatible insect technique (IIT) are current methods for biological control of insect populations. Critical to the successful implementation of these biocontrol programs is quantifying the competitiveness of sterile/incompatible male insects for female mates relative to wildtype males. Traditionally, entomologists measure this mating competitiveness through a quantity known as Fried’s Index. We establish that Fried’s Index is mathematically equivalent to the mating competitiveness coefficient that features in many population models used in SIT/IIT programs. Using this insight, we propose a new approach for estimating Fried’s Index from mating competitiveness experiments. We show that this approach offers greater precision and accuracy than the traditional approach that is currently used in many studies. This is demonstrated using both simulation experiments and by analysing real experimental data. To facilitate uptake of the proposed method, we also provide an R package that can be used to easily analyse data from mating competitiveness experiments

    Two hepcidin-like antimicrobial peptides in Barramundi Lates calcarifer exhibit differing tissue tropism and are induced in response to lipopolysaccharide

    No full text
    Fish represent the most diverse and abundant extant vertebrate infraclass. They are also one of the earliest divergent phyla with adaptive immunity based on antigen recognition by MHC and immunoglobulin. The aquaculture industry, which currently provides more than half of the fish for human consumption globally, has successfully exploited the adaptive immune system of fish through mass vaccination programs. However, vaccination against highly diverse antigens, mostly carbohydrates, such as capsular polysaccharides and lipopolysaccharide (LPS) is challenging. Fish have a subdued innate response to LPS, but adaptive response is generally high and type-specific. To better understand the link between initial innate response and early onset of adaptive immunity to carbohydrate antigens in the perciform barramundi (Lates calcarifer), an immune transcriptome was prepared from pronephros and spleen following vaccination with LPS and peptidoglycan. From 163,661 transcripts derived by Illumina mRNA-Seq, most grouped in neuronal, endocrine or immune system categories, suggesting a close relationship between the three systems. Moreover, digestive enzyme transcripts in spleen appeared to be highly inducible in barramundi. Most of the known TLRs were transcribed in the barramundi spleen and HK transcriptome, with the notable exception of TLR4, which is primarily responsible for LPS recognition in mammals. Several C-type lectin receptors were also identified, including CD209, CD205, and CLEC4E (Mincle). As Mincle has been shown to bind LPS and is abundant on dendritic cells, its role in response to LPS in barramundi was further investigated. A high dose of LPS induced TNF-alpha expression via Mincle. However, IL-6 regulation, whilst still regulated in response to LPS, did not depend upon the Mincle pathway, suggesting other routes of activation. This study thus suggests that Mincle acts as a partial substitute for TLR4 in barramundi in the processing of LPS
    corecore