239 research outputs found

    Wave attenuation at a salt marsh margin: A case study of an exposed coast on the Yangtze estuary

    Get PDF
    To quantify wave attenuation by (introduced) Spartina alterniflora vegetation at an exposed macrotidal coast in the Yangtze Estuary, China, wave parameters and water depth were measured during 13 consecutive tides at nine locations ranging from 10 m seaward to 50 m landward of the low marsh edge. During this period, the incident wave height ranged from <0.1 to 1.5 m, the maximum of which is much higher than observed in other marsh areas around the world. Our measurements and calculations showed that the wave attenuation rate per unit distance was 1 to 2 magnitudes higher over the marsh than over an adjacent mudflat. Although the elevation gradient of the marsh margin was significantly higher than that of the adjacent mudflat, more than 80% of wave attenuation was ascribed to the presence of vegetation, suggesting that shoaling effects were of minor importance. On average, waves reaching the marsh were eliminated over a distance of similar to 80 m, although a marsh distance of >= 100 m was needed before the maximum height waves were fully attenuated during high tides. These attenuation distances were longer than those previously found in American salt marshes, mainly due to the macrotidal and exposed conditions at the present site. The ratio of water depth to plant height showed an inverse correlation with wave attenuation rate, indicating that plant height is a crucial factor determining the efficiency of wave attenuation. Consequently, the tall shoots of the introduced S. alterniflora makes this species much more efficient at attenuating waves than the shorter, native pioneer species in the Yangtze Estuary, and should therefore be considered as a factor in coastal management during the present era of sea-level rise and global change. We also found that wave attenuation across the salt marsh can be predicted using published models when a suitable coefficient is incorporated to account for drag, which varies in place and time due to differences in plant characteristics and abiotic conditions (i.e., bed gradient, initial water depth, and wave action).

    The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat

    Get PDF
    © The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: [email protected]. BACKGROUND: The combination of rising sea levels and increased likelihood of extreme storm events poses a major threat to our coastlines and as a result, many ecosystems recognized and valued for their important contribution to coastal defence face increased damage from erosion and flooding. Nevertheless, only recently have we begun to examine how plant species and communities, respond to, and recover from, the many disturbances associated with storm events. SCOPE: We review how the threats posed by a combination of sea level rise and storms affects coastal sub-, inter- and supra-tidal plant communities. We consider ecophysiological impacts at the level of the individual plant, but also how ecological interactions at the community level, and responses at landscape scale, inform our understanding of how and why an increasing frequency and intensity of storm damage are vital to effective coastal management. While noting how research is centred on the impact of hurricanes in the US Gulf region, we take a global perspective and consider how ecosystems worldwide (e.g. seagrass, kelp forests, sand dunes, saltmarsh and mangroves) respond to storm damage and contribute to coastal defence. CONCLUSIONS: The threats posed by storms to coastal plant communities are undoubtedly severe, but, beyond this obvious conclusion, we highlight four research priority areas. These call for studies focusing on (1) how storm disturbance affects plant reproduction and recruitment; (2) plant response to the multiple stressors associated with anthropogenic climate change and storm events; (3) the role of ecosystem-level interactions in dictating post-disturbance recovery; and (4) models and long-term monitoring to better predict where and how storms and other climate change-driven phenomena impact coastal ecosystems and services. In so doing, we argue how plant scientists must work with geomorphologists and environmental agencies to protect the unique biodiversity and pivotal contribution to coastal defence delivered by maritime plant communities

    Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects

    Get PDF
    Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long‐term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow‐water stages (VSWS, water depths 0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed‐level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro‐topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes

    Wave attenuation over coastal salt marshes under storm surge conditions

    Get PDF
    Coastal communities around the world face increasing risk from flooding as a result of rising sea level, increasing storminess, and land subsidence1–2. Salt marshes can act as natural buffer zones, providing protection from waves during storms3–7. However, the effectiveness of marshes in protecting the coastline during extreme events when water levels are at a maximum and waves are highest is poorly understood8,9. Here, we experimentally assess wave dissipation under storm surge conditions in a 300-meter-long wave flume tank that contains a transplanted section of natural salt marsh. We find that the presence of marsh vegetation causes considerable wave attenuation, even when water levels and waves are highest. From a comparison with experiments without vegetation, we estimate that up to 60% of observed wave reduction is attributed to vegetation. We also find that although waves progressively flatten and break vegetation stems and thereby reduce dissipation, the marsh substrate remained stable and resistant to surface erosion under all conditions. The effectiveness of storm wave dissipation and the resilience of tidal marshes even at extreme conditions suggests that salt marsh ecosystems can be a valuable component of coastal protection schemes.This is the author's accepted manuscript and will be under embargo until the 29th of March 2015. The final version has been published by NPG in Nature Geoscience here: http://www.nature.com/ngeo/journal/v7/n10/full/ngeo2251.html

    Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems

    Get PDF
    Phytophthora species are potent pathogens that can devastate terrestrial plants, causing billions of dollars of damage yearly to agricultural crops and harming fragile ecosystems worldwide. Yet, virtually nothing is known about the distribution and pathogenicity of their marine relatives. This is surprising, as marine plants form vital habitats in coastal zones worldwide (i.e. mangrove forests, salt marshes, seagrass beds), and disease may be an important bottleneck for the conservation and restoration of these rapidly declining ecosystems. We are the first to report on widespread infection of Phytophthora and Halophytophthora species on a common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean. In addition, we tested the effects of Halophytophthora sp. Zostera and Phytophthora gemini on Z. marina seed germination in a full-factorial laboratory experiment under various environmental conditions. Results suggest that Phytophthora species are widespread as we found these oomycetes in eelgrass beds in six countries across the North Atlantic and Mediterranean. Infection by Halophytophthora sp. Zostera, P. gemini, or both, strongly affected sexual reproduction by reducing seed germination sixfold. Our findings have important implications for seagrass ecology, because these putative pathogens probably negatively affect ecosystem functioning, as well as current restoration and conservation efforts

    Flow-divergence feedbacks control propagule retention by in-stream vegetation: the importance of spatial patterns for facilitation

    Get PDF
    Facilitation (enhancement of propagule retention in this case) is increasingly recognized as an important driver of biodiversity, but it is still unknown if facilitation during dispersal and colonization is affected by self-organized spatial pattern formation. We investigated the ability of in-stream submerged macrophyte patches to trap the vegetative propagules of three species (<i>Berula erecta</I>, <i>Groenlandia densa</i>, <i>Elodea nuttallii</i> in two size classes: 13–22 and 40–48 cm long), and to potentially benefit the colonization of these three species. We tested the effects of propagule traits, hydrodynamic forcing, and spatial patch configuration on propagule trapping. Propagule buoyancy was negatively correlated with trapping chance, while propagule size did not influence trapping. Species-specific differences in buoyancy were maintained for weeks after fragmentation. Propagule retention was interactive and conditional upon the interplay between incoming flow velocities and vegetation spatial patterning. In the flume experiment at low flows, a patchy configuration (one patch filling 66% of the flume width) retained more surface-drifting propagules (<i>B. erecta, G. densa</i>), than near-homogeneous cover (two patches close together, filling the entire flume width). In contrast, retention of sinking <i>E. nuttallii</i> propagules increased in the two-patch configurations. In flume and field releases where patches did not completely fill the channel width, water flowed around the patches rather than over or through them. This resulted in low-flow velocity areas within patches where canopies were upright and propagules were retained, and higher velocity flows around patches. In contrast, when vegetation filled the channel width, water could not be diverted laterally around the patches and preferentially flowed over them, causing the canopies to bend and reduce their trapping capacity. In flume experiments at high flows, retention of all species decreased, regardless of vegetation configuration, as propagules passed over the reconfigured vegetation canopies. These findings on the interplay of water movement and patch reconfiguration suggest that environmental heterogeneity generated by the self-organizing behavior of aquatic plants might enhance colonization of sessile organisms, calling for landscape-scale processes like dispersal to be better investigated

    Vegetation-wave interactions in salt marshes under storm surge conditions

    Get PDF
    Vegetation-wave interactions are critical in determining the capacity of coastal salt marshes to reduce wave energy (wave dissipation), enhance sedimentation and protect the shoreline from erosion. While vegetation-induced wave dissipation is increasingly recognized in low wave energy environments, little is known about: (i) the effect of vegetation on wave dissipation during storms when wave heights and water levels are highest; and (ii) the ability of different plant species to dissipate waves and to maintain their integrity under storm surge conditions. Experiments undertaken in one of the world’s largest wave flumes allowed, for the first time, the study of vegetation-wave interactions at near-field scale, under wave heights ranging from 0.1–0.9 m (corresponding to orbital velocities of 2–91 cm s−1) and water depths up to 2 m, in canopies of two typical NW European salt marsh grasses: Puccinellia maritima (Puccinellia) and Elymus athericus (Elymus). Results indicate that plant flexibility and height, as well as wave conditions and water depth, play an important role in determining how salt marsh vegetation interacts with waves. Under medium conditions (orbital velocity 42–63 cm s−1), the effect of Puccinellia and Elymus on wave orbital velocities varied with water depth and wave period. Under high water levels (2 m) and long wave periods (4.1 s), within the flexible, low-growing Puccinellia canopy orbital velocity was reduced by 35% while in the more rigid, tall Elymus canopy deflection and folding of stems occurred and no significant effect on orbital velocity was found. Under low water levels (1 m) and short wave periods (2.9 s) by contrast, Elymus reduced near-bed velocity more than Puccinellia. Under high orbital velocities (≄74 cm s−1), flattening of the canopy and an increase of orbital velocity was observed for both Puccinellia and Elymus. Stem folding and breakage in Elymus at a threshold orbital velocity ≄ 42 cm s−1 coincided with a levelling-off in the marsh wave dissipation capacity, while Puccinellia survived even extreme wave forces without physical damage. These findings suggest a species-specific control of wave dissipation by salt marshes which can potentially inform predictions of the wave dissipation capacity of marshes and their resilience to storm surge conditions.M.P. acknowledges funding by the German Science Foundation (grant no. PA 2547/1-1). The work described in this publication was supported by the European Community’s 7th Framework Programme through the grant to the budget of the Integrating Activity HYDRALAB IV, Contract no. 261529 and by a grant from The Isaac Newton Trust, Trinity College, Cambridge

    Plant stiffness and biomass as drivers for drag forces under extreme wave loading: A flume study on mimics

    Get PDF
    © 2016Moving water exerts drag forces on vegetation. The susceptibility of vegetation to bending and breakage determines its flow resistance, and chances of survival, under hydrodynamic loading. To evaluate the role of individual vegetation parameters in this water-vegetation interaction, we conducted drag force measurements under a wide range of wave loadings in a large wave flume. Artificial vegetation elements were used to manipulate stiffness, frontal area in still water and material volume as a proxy for biomass. The aim was to compare: (i) identical volume but different still frontal area, (ii) identical stiffness but different still frontal area, and (iii) identical still frontal area but different volume. Comparison of mimic arrangements showed that stiffness and the dynamic frontal area (i.e., frontal area resulting from bending which depends on stiffness and hydrodynamic forcing) determine drag forces. Only at low orbital-flow velocities did the still frontal area dominate the force-velocity relationship and it is hypothesised that no mimic bending took place under these conditions. Mimic arrangements with identical stiffness but different overall material volume and still frontal area showed that forces do not increase linearly with increasing material volume and it is proposed that short distances between mimics cause their interaction and result in additional drag forces. A model, based on effective leaf length and characteristic plant width developed for unidirectional flow, performed well for the force time series under both regular and irregular waves. However, its uncertainty increased with increasing interaction of neighbouring mimics

    Salt marsh surface survives true-to-scale simulated storm surges

    Get PDF
    A full-scale controlled experiment was conducted on an excavated and re-assembled coastal wetland surface, typical of floristically diverse NW European saltmarsh. The experiment was undertaken with true-to-scale water depths and waves in a large wave flume, in order to assess the impact of storm surge conditions on marsh surface soils, initially with three different plant species and then when this marsh canopy had been mowed. The data presented suggests a high bio-geomorphological resilience of salt marshes to vertical sediment removal, with less than 0.6 cm average vertical lowering in response to a sequence of simulated storm surge conditions. Both organic matter content and plant species exerted an important influence on both the variability and degree of soil surface stability, with surfaces covered by a flattened canopy of the salt marsh grass Puccinellia experiencing a lower and less variable elevation loss than those characterized by Elymus or Atriplex that exhibited considerable physical damage through stem folding and breakage.We thank all of the support staff at the Grosser Wellenkanal; Ben Evans, James Tempest, Kostas Milonidis, Chris Rolfe and Colin Edwards, Cambridge University; and Dennis Schulze, Hamburg University, for their in valuable logistical assistance. Fitzwilliam College, Cambridge supported the research time of IM. The work described in this publication was supported by the European Community’s 7th Framework Programme (Integrating Activity HYDRALAB IV, Contract No. 261529) and by a grant from The Isaac Newton Trust, Trinity College, Cambridge. We thank Mark Schuerch, Kiel University, for helpful insights into storm surge flooding on Sylt, Germany Wadden Sea. The authors have no conflicts of interest to declare.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1002/esp.386
    • 

    corecore