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Highlights 41 

- Salt marsh vegetation can reduce near-bed orbital velocities during storm surges 42 

- Vegetation effect on orbital velocities varies with biophysical properties 43 

- Flexible low-growing plant canopies show  high resilience to storm surge conditions 44 

- More rigid and tall grasses experience stem folding and breakage 45 

- The contribution of vegetation to wave dissipation is plant species specific  46 

  47 
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Abstract 48 

Vegetation-wave interactions are critical in determining the capacity of coastal salt marshes to 49 

reduce wave energy (wave dissipation), enhance sedimentation and protect the shoreline from 50 

erosion. While vegetation-induced wave dissipation is increasingly recognized in low wave energy 51 

environments, little is known about: i) the effect of vegetation on wave dissipation during storms 52 

when wave heights and water levels are highest; and ii)  the ability of different plant species to 53 

dissipate waves and to maintain their integrity under storm surge conditions. Experiments 54 

undertaken in one of the world’s largest wave flumes allowed, for the first time, the study of 55 

vegetation-wave interactions at near-field scale, under wave heights ranging from 0.1 – 0.9 m 56 

(corresponding to orbital velocities of 2 – 91 cm s-1) and water depths up to 2 m, in canopies of two 57 

typical NW European salt marsh grasses: Puccinellia maritima (Puccinellia) and Elymus athericus 58 

(Elymus). Results indicate that plant flexibility and height, as well as wave conditions and water depth, 59 

play an important role in determining how salt marsh vegetation interacts with waves. Under 60 

medium conditions (orbital velocity 42 – 63 cm s-1), the effect of Puccinellia and Elymus on wave 61 

orbital velocities varied with water depth and wave period. Under high water levels (2 m) and long 62 

wave periods (4.1 s), within the flexible, low-growing Puccinellia canopy orbital velocity was reduced 63 

by 35% while in the more rigid, tall Elymus canopy deflection and folding of stems occurred and no 64 

significant effect on orbital velocity was found. Under low water levels (1 m) and short wave periods 65 

(2.9 s) by contrast, Elymus reduced near-bed velocity more than Puccinellia. Under high orbital 66 

velocities (≥74 cms-1), flattening of the canopy and an increase of orbital velocity was observed for 67 

both Puccinellia and Elymus. Stem folding and breakage in Elymus at a threshold orbital velocity ≥ 42 68 

cm s-1 coincided with a levelling-off in the marsh wave dissipation capacity, while Puccinellia survived 69 

even extreme wave forces without physical damage. These findings suggest a species-specific control 70 

of wave dissipation by salt marshes which can potentially inform predictions of the wave dissipation 71 

capacity of marshes and their resilience to storm surge conditions. 72 

 73 

Key words: Wave dissipation; Flow reduction; Coastal wetlands; Biophysical plant properties; Plant 74 

breakage; Vegetation resilience; Wave flume experiment 75 
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1. Introduction 77 

 78 

The interaction of vegetation with currents and waves affects a wide range of ecosystem 79 

functions of coastal salt marshes including the reduction of hydrodynamic energy, sediment 80 

deposition and erosion and carbon storage (Duarte et al., 2013; McLeod et al., 2011; Möller et al., 81 

1999; Temmerman et al., 2005).  82 

Most knowledge on flow dynamics in and around salt marsh canopies has been acquired under 83 

average hydrodynamic conditions. Field studies have shown a reduction of both unidirectional and 84 

wave-induced oscillatory flow within plant canopies that can lead to a decline in bed shear stress and 85 

erosion and promote sedimentation (Leonard and Croft 2006; Neumeier and Amos 2006a; Neumeier 86 

and Amos 2006b; Peralta and others 2008). Flume and numerical modelling studies have highlighted 87 

the importance of plant posture and motion as a mechanism for the vegetation-mediated reduction 88 

of water velocity and hydrodynamic energy (Bouma and others 2005; Dijkstra and Uittenbogaard 89 

2010; Luhar and Nepf 2011; Luhar and Nepf 2016; Mullarney and Henderson 2010). When waves 90 

advance over a vegetated marsh surface, and water depths are low enough to allow wave-induced 91 

oscillatory flow to penetrate into the canopy layer, vegetation interacts with this flow and provides 92 

flow resistance. In return, the vegetation experiences drag and re-orientation by wave forces 93 

(Mullarney and Henderson 2010). The drag caused by plants causes a reduction of wave orbital 94 

velocities and thus wave height and energy (wave dissipation). 95 

Knowledge of this wave dissipation function has generated  high interest in the use of vegetated 96 

ecosystems, such as salt marshes, as a cost-effective  element of coastal protection schemes. 97 

Furthermore, the ability of marshes to track rising water levels as a result of the positive feedbacks 98 

between vegetation growth and marsh accretion suggests sustainable protection under accelerated 99 

sea level rise (Kirwan and others 2016). However few empirical observations of vegetation-wave 100 

interactions exist, especially during storm surges when water levels and waves are highest and large 101 

amounts of sediments are mobilized (Cahoon 2006; Stumpf 1983; Turner and others 2006). I Hence it 102 

is not clear how canopies of different salt marsh plants vary in their ability to reduce wave orbital 103 

velocities and thus in their contribution to wave dissipation and erosion protection. 104 

Detailed insights into vegetation-wave interactions are of major importance for salt marsh 105 

conservation and management aiming to maximize the sea defence value of marshes as well as for 106 

the generation of reliable predictions of the marsh wave dissipation capacity and marsh resilience to 107 

storm events. Only with this knowledge will it be possible to successfully incorporate marshes into 108 

coastal defense schemes (Anderson and Smith 2014; Bouma and others 2014; Möller and others 109 

2014).  110 
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Vegetation-wave interactions, and the resulting wave dissipation, are a function of biophysical 111 

plant properties such as flexibility, density, biomass and height as well as hydrodynamic conditions 112 

such as incident wave height, wave period and water depth (Anderson and others 2011; Paul and 113 

others 2016). 114 

Plant flexibility determines how much, and in what way, plants move and hence the magnitude 115 

of drag forces experienced (Luhar and Nepf 2016; Mullarney and Henderson 2010; Paul and others 116 

2016). Under wave forcing two types of plant movement need to be distinguished:  117 

Swaying is an oscillatory plant movement throughout the wave cycle with symmetric bending in 118 

the both directions of water flow under wave motion. Whip-like movement is characterized by a fast 119 

flipping over from a short backward bending of the plants, to an extended ‘forward’ bending and 120 

wide stem extension in the dominant direction of wave-induced oscillatory flow (in general the 121 

direction of wave travel). The latter motion results in flattening of the canopy, a loss of flow 122 

resistance and high orbital velocity for part of the wave cycle. A transition from swaying to whip-like 123 

movement can occur for a species when wave height and energy increases, with the point of 124 

transition depending on the stiffness of the plant and the ratio of plant height to wave orbital 125 

excursion (Manca 2010; Paul and others 2012).  126 

Numerical models simulating the motion of flexible aquatic vegetation under wave orbital 127 

velocities use primarily two dimensionless parameters to describe plant movement and predict drag 128 

forces acting on vegetation: (i) the Cauchy number, Ca, which represents the ratio of the 129 

hydrodynamic forcing to the restoring force due to plant stiffness; and (ii) the ratio of plant height to 130 

wave orbital excursion, L (Luhar and Nepf 2016). A value of Ca < 1 implies an upright plant posture 131 

under wave-induced oscillatory flow, as hydrodynamic forces are much smaller than the restoring 132 

force due to stiffness. When Ca > 1, plants start to bend with increasing values of Ca indicating a 133 

decrease of flow resistance and drag acting on vegetation due to increasing plant bending under 134 

wave forces. For L > 1, a swaying plant movement with moderate bending angles can be assumed. 135 

When L < 1, the high orbital velocities are expected to cause an extended ‘forward’ bending and a 136 

flattening of the canopy and low flow resistance for part of the wave cycle (Luhar and Nepf 2016), i.e. 137 

a plant behaviour typically occurring under a whip like canopy movement. For flexible aquatic 138 

vegetation the buoyancy parameter B, representing the ratio of restoring forces due to buoyancy and 139 

stiffness, also affects plant bending (Luhar and Nepf 2011). However, B  can be neglected in the case 140 

of the terrestrial salt marsh plants that exhibit high stiffness compared to seagrasses or macroalgae 141 

(Rupprecht et al., 2015a). 142 

Salt marsh plants show a wide variability of stem flexibility, both between different species and 143 

the different stem parts of specimens of one species. Little is known on how this variability affects 144 

vegetation-wave interactions (Rupprecht and others 2015a). Previous studies on plants of tidal 145 



6 
 

marshes (Bouma and others 2005; Heuner and others 2015; Silinski and others 2015) but also on 146 

freshwater macrophytes (Aberle and Jarvela 2013; Robionek and others 2015; Sand-Jensen 2003) 147 

and macroalgae (Gaylord and Denny 1997; Stewart 2006) have shown that drag experienced by 148 

plants under hydrodynamic forcing is inversely related to their flexibility. Flexible plants show an 149 

avoidance strategy and minimize the risk of folding and breakage through reconfiguration; stiff plants 150 

by contrast maximize the resistance to physical damage (tolerance strategy) but may break if 151 

hydrodynamic forces increase beyond a critical level (Heuner and others 2015; Puijalon and others 152 

2011; Silinski and others 2015). For plants characterized byswaying movement, a positive correlation 153 

between stem stiffness and vegetation-induced wave dissipation has been observed (Bouma and 154 

others 2005). When comparing two salt marsh grasses with different stem flexibility and stem 155 

density, Bouma et al. (2010) found that an increase in stem density and biomass can counteract the 156 

reduced wave dissipation capacity of flexible plants. 157 

Apart from stem flexibility, density and biomass, the wave dissipation capacity of salt marsh 158 

canopies is affected by the ratio of water depth to canopy height (submergence ratio) (Möller and 159 

others 1997; Möller and others 1999; Yang and others 2012). The effectiveness of vegetation in 160 

dissipating waves has been shown to increase with the percentage of the water column that it 161 

occupies, i.e. with decreasing submergence ratio (Augustin et al., 2009; Paul et al., 2012).. 162 

Beyond a critical combination of orbital velocities and water depth, changes in type and 163 

magnitude of vegetation-wave interactions are likely to result in a significant alteration of 164 

vegetation-induced wave dissipation. The existence of hydrodynamic thresholds determining the 165 

transition from wave regimes with vegetation-induced wave modification and wave dissipation to 166 

those regimes characterized by a flexing, folding or breakage of plants under wave orbital velocities 167 

and a decline in vegetation-induced wave dissipation has been suggested by various authors (Gedan 168 

et al., 2011; Koch et al., 2009; Möller et al., 1999; Yang et al., 2012), but remains to be demonstrated. 169 

This is because the quantification of such hydrodynamic thresholds either by field studies, flume 170 

experiments or by numerical modelling is extremely challenging. Field studies suffer from the 171 

unpredictable nature and high temporal variability of wave conditions and difficulties in deploying 172 

instrumentation under higher energy wave events. Laboratory flume studies offer controlled wave 173 

conditions, but are often hampered by limits to the water depths and waves that can be generated. It 174 

has proved difficult to build realistic small-scale physical models of vegetated surfaces (Fonseca and 175 

Cahalan 1992; Mendez and Losada 2004).  176 

Numerical models of wave dissipation can simulate a wide range of wave conditions (Mendez 177 

and Losada 2004; Riffe et al., 2011) but in the absence of suitably representative flume or field 178 

calibration data suffer from the difficulty of realistically representing vegetation as well as its effect 179 

on wave orbital velocities. 180 
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In this paper we report results from a unique experiment on wave dissipation over coastal salt 181 

marshes conducted in one of the world’s largest wave flumes at a near field scale (for details see 182 

Möller et al., 2014). We analyzed vegetation-wave interactions in canopies of two salt marsh grasses, 183 

the low growing and flexible Puccinellia maritima and the tall, less flexible Elymus athericus, over a 184 

wide range of wave conditions and corresponding orbital velocities to answer the following questions: 185 

 186 

(1) How do plant canopies of different biophysical properties (flexible and low-growing vs. 187 

stiff and tall) affect wave orbital velocities under rising wave energy and water depths? 188 

 189 

(2) Does physical damage to vegetation under increasing wave energy differ between flexible, 190 

low-growing canopies and stiff, tall canopies? If so – is there a threshold in orbital velocity 191 

beyond which differences in plant susceptibility to folding and breakage become apparent?  192 

 193 

2. Methods 194 

2.1 Study species and biophysical properties 195 

We investigated two grasses commonly occurring in NW European salt marshes, Puccinellia maritima 196 

(Hudson) Parl. and Elymus athericus L.; hereafter referred to as Puccinellia and Elymus(Fig. 1). 197 

Puccinellia is typical of marshes at low to mid elevations in the tidal frame and characteristic of early- 198 

to mid-successional stages of salt marsh vegetation development. Where sandy soils are present, it 199 

can also be found in the lower-lying pioneer zone. Puccinellia is also a characteristic species of grazed 200 

salt marshes, as the species is tolerant to trampling, biomass loss and waterlogging and can 201 

reproduce by clonal growth.  202 

In contrast to Puccinellia, Elymus needs aerated soils and is sensitive to grazing. In many salt marshes 203 

of NW Europe, it forms monospecific dense stands in the high marshes and represents a late-204 

successional stage of salt marsh vegetation. In recent decades, Elymus has rapidly colonized 205 

mainland salt marshes along the North Sea coast and the Atlantic coast where it can be found not 206 

only in the high marsh but also in mid and sometimes low marshes (Bockelmann and Neuhaus 1999; 207 

Valéry et al., 2004). The expansion of Elymus has been related to the abandonment of grazing, high 208 

vertical accretion rates and marsh age as well as the species ability to reproduce clonally by rhizomes 209 

(Rupprecht et al., 2015b; Veeneklaas et al., 2013).  210 

Puccinellia and Elymus differ with respect to their biophysical properties, such as plant stem 211 

flexibility, stem density and stem height, which have relevance for flow and wave dissipation. 212 

Puccinellia canopies are characterized by a high stem flexibility, high stem density and low canopy 213 
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height (around 0.2 m, Table 1). Canopies of Elymus show a low stem flexibility and stem density and a 214 

canopy height (around 0.8 m) that is four times greater than that of Puccinellia (Table 1). Previous 215 

measurements of stem flexibility in salt marsh grasses have shown that variation of stem flexibility 216 

between the bottom (more rigid) and the middle and top (more flexible) stem parts of Elymus is 217 

much higher than in Puccinellia (Rupprecht et al., 2015a).  218 

As measures of stem flexibility, the Young’s bending modulus and flexural rigidity of Puccinellia 219 

and Elymus stems were determined of 17 and 18 samples, respectively, using a three-point-bending 220 

test ( for methodology see Rupprecht et al. (2015a)). Prior to performing the tests, stem length up to 221 

the onset of the youngest leaf was measured and stems were divided into three equal parts (bottom, 222 

middle, top). The test section was cut from the middle of each part of the stem. 223 

Stem height was measured with a folding rule for 30 randomly chosen stems. Stem density of 224 

Elymus was measured by counting the number of stems in 15 quadrats of a size of 20 x 20 cm 225 

randomly distributed across the vegetated test section in the flume. For Puccinellia, the very high 226 

stem density (N/m² >1000) and the low stem diameter meant that a quantitative assessment of stem 227 

density was not feasible in the framework of the present study. 228 

We compared biophysical properties of the Puccinellia and the Elymus canopy between the flume 229 

test section and the field site from where the salt marsh for the flume experiment was excavated 230 

(see also section 2.2). No statistical difference was found in the Young’s bending modulus; t-test; p > 231 

0.05. However flexural rigidity of Puccinellia and Elymus stems was significantly lower in the flume 232 

than in the field (t-test; p < 0.01). This indicates that stems of Puccinellia and Elymus in the flume 233 

were more flexible than stems at the field site, when accounting for varying stem diameter. The 234 

lower nutrient supply and less mechanical stress experienced  during the one year storage period of 235 

the vegetation prior to the start of the experiment (for detailed information see Möller et al., 2014), 236 

as compared to the regular flood of in situ marshes, may explain these differences. 237 

Stem height of Puccinellia was significantly higher in the flume than in the field (t-test; p < 0.05). 238 

For Elymus, no significant differences of stem height and stem density were found between the 239 

flume and the field site (t-test; p > 0.05).  240 

#Figure 1 241 

#Table 1 242 

 243 

2.2 Experimental set-up 244 

The study was carried out in conjunction with an experiment on wave dissipation over natural 245 

salt marsh transplants under storm surge conditions (Möller et al., 2014). This experiment was 246 

conducted in the 5 m wide, 7 m deep and approx. 310 m long Large Wave Flume (GWK) of the 247 

Forschungszentrum Küste (FZK) in Hannover, Germany and lasted 17 days (15 – 31 October 2013). . A 248 
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detailed description of the excavation of the salt marsh and its installation within the flume, the 249 

experimental set-up and the employed instrumentation to measure wave dissipation is given in 250 

Möller et al. (2014).  251 

An elevated vegetated test section of 40 m length was constructed approx. 115 m from the wave 252 

paddle on top of a 1.2 m high sand base covered by a geotextile layer. This was necessary to ensure 253 

sufficient water depth at the wave paddle to generate the desired waves and to allow waves to fully 254 

develop before reaching the vegetated test section. At the front and rear end of the vegetated test 255 

section a concrete berm, followed by a slope of 1:10 was built to allow the waves to shoal and/or 256 

break, as would be the case in a natural shallow water marsh setting (Fig. 2 a). Wave breaking at the 257 

1:6 asphalt slope at the end of the flume minimized wave reflection and active wave absorption of 258 

the wave maker. 259 

The vegetated test section consisted of a coherent patchwork of marsh blocks, each with a size 260 

of approximately 0.8 x 1.2 x 0.3 m. The blocks were vegetated with either Puccinellia, Elymus or the 261 

herbaceous forb Atriplex prostrata. 262 

An underwater observation window in the flume wall 6 meters from the start of the vegetated 263 

test section allowed the video capture of individual Elymus and Puccinellia movement during the 264 

experiment. Four marsh blocks with Puccinellia and four marsh blocks with Elymus were deployed 265 

next to each other in front of this window covering an area of 4 m2 respectively. Two 2D-266 

Electromagnetic current meters (EMCMs) were positioned on both sides of the underwater 267 

observation window approximately 15 cm above the bed, one in the canopy of Puccinellia and one in 268 

the canopy of Elymus (Fig. 2b). During wave tests, the EMCMs recorded wave orbital velocities with a 269 

frequency of 100 Hz and a precision of ± 10 cm s-1. In the immediate vicinity of the EMCMs, water 270 

pressure oscillation was recorded with a PTX1830 pressure wave gauge at the same sampling 271 

frequency as the EMCMs (100 Hz).  272 

The marsh canopy was submerged for 2 – 3 days at a time for wave tests. After each two day 273 

period of submergence the vegetation was exposed for at least 12 hours to allow plants regular gas 274 

exchange. As wave dissipation can be induced through both wave-plant and wave-sediment bottom 275 

interactions, a number of tests were conducted with initially intact and then removed (mowed) 276 

vegetation (height of remaining plant stems after mowing approx. 2 – 3 cm). This enabled us to 277 

quantify the effect of vegetation on the observed wave dissipation. During the course of the 278 

experiment the entire vegetated test section was illuminated for the benefit of the plants by a total 279 

of 60 lamps (GE 750W 400V PSL or equivalent) mounted along the upper margins of the flume. 280 

#Fig. 2 281 

#Table 2 282 

 283 
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2.3 Experimental programme 284 

Eight wave heights (H; 1 – 0.9 m, seven wave periods (T; 1.5 – 6.2 s) and two different water depths 285 

(h; 1 m and 2 m) were simulated to analyze vegetation-wave interactions in canopies of Puccinellia 286 

and Elymus (Table 2). For each hydrodynamic condition tested, regular non-breaking waves (96 ≤ N ≤ 287 

148) were generated (Table 2). 288 

In order to quantify the wave energy and the drag imparted by wave orbital velocities on the 289 

vegetation, as well as the vegetation response to hydrodynamic forcing, we calculated for each test 290 

the wave energy flux per meter crest length (P, equation 3) and the peak orbital velocity in direction 291 

of wave travel 15 cm above the bed (matching the height at which orbital velocities were recorded 292 

within plant canopies) according to linear wave theory (Upred f, equation 5). The Cauchy number (Ca, 293 

equation 6) and the ratio of plant stem height to wave orbital excursion (L, equation 7) were 294 

calculated according to the formula proposed in Luhar and Nepf (2016). Both P and Umax pred were 295 

determined from wave parameters recorded by the wave gauge set deployed immediately in front of 296 

the vegetated test section (Fig. 1a). The first 11 fully developed waves were found to be entirely 297 

unaffected by reflection from the flume rear end and were used to determine average wave height 298 

(H, from min-max water surface elevations) and period (T, from zero-upcrossing points).  299 

The following formulae were used to calculate Umax pred (m s-1), P (kW m-1), Ca and L: 300 

 301 

𝑃 = 𝐶𝑔𝐸           [Eq. 1] 302 

in which  303 

𝐶𝑔 =
1

2
[1 +

4𝜋ℎ/𝐿𝑤𝑎𝑣𝑒

sinh(
4𝜋ℎ

𝐿𝑤𝑎𝑣𝑒
)
]

𝐿𝑤𝑎𝑣𝑒

𝑇
         [Eq. 2] 304 

𝐸𝑤𝑎𝑣𝑒 =
1

8
𝜌𝑔𝐻2           [Eq. 3] 305 

and 306 

𝐿𝑤𝑎𝑣𝑒 =
𝑔𝑇2

2𝜋
 𝑡𝑎𝑛ℎ (

2𝜋ℎ

𝐿𝑤𝑎𝑣𝑒
)         [Eq. 4] 307 

𝑈𝑝𝑒𝑎𝑘 𝑓 𝑝𝑟𝑒𝑑 =  
𝐻 𝜋

𝑇

𝑆𝑖𝑛ℎ(2𝜋
ℎ

𝐿𝑤𝑎𝑣𝑒
)

         [Eq. 5] 308 

𝐶𝑎 =  
𝜌𝑑𝑈𝑝𝑒𝑎𝑘 𝑓 𝑝𝑟𝑒𝑑

2 𝑙3

𝐸𝐼
          [Eq. 6] 309 

in which  310 

𝐼 =  
𝜋𝑑4

64
 311 

and 312 

 𝐸 =  
𝐸𝑏𝐼

𝐼
=

4 𝑠3𝐹

3𝐷𝜋𝑑4           [Eq. 7] 313 
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𝐿 =  
𝑙

𝐴 
           [Eq. 8] 314 

in which  315 

𝐴 =  
𝑈𝑝𝑒𝑎𝑘 𝑓 𝑝𝑟𝑒𝑑

𝜔
          [Eq. 9] 316 

and 317 

𝜔 =  
2𝜋

𝑇
           [Eq. 10] 318 

 319 

where Cg = group wave celerity (m s-1), Ewave = wave energy (J m-2), H = wave height (m), T= wave 320 

period (s), Lwave = wave length (m), h = water depth (m), A = wave orbital excursion (m), ω = angular 321 

frequency (rad s-1), ρ = water density (1.02 kg m-3), g = acceleration by gravity (m3 (kg s)-1), I = second 322 

moment of area (m), d = plant stem diameter (m), l = plant stem height (m), Eb = Young’s bending 323 

modulus (Pa). D = vertical deflection of the stem (m), F = force orthogonal to the plant stem (N) and s 324 

= horizontal span of the plant stem (m) in the three-point bending tests used to measure Eb (see 325 

Rupprecht et al., 2015a). 326 

 327 

Conditions with Upeak f pred ≤ 32 cm s-1 (corresponding to P ≤ 0.48 kW m-1) are referred to as ‘low 328 

orbital velocity’; 42 ≤ Upeak f pred ≤ 63 cm s-1 (corresponding to 0.47 ≤ P ≤ 1.36 kW m-1) as ‘medium 329 

orbital velocity’ and Upeak f pred ≥ 74 kW cm s-1 (corresponding to 0.65 ≤ P ≤ 3.39 kW m-1) as ‘high 330 

orbital velocity’ (Table 2, Fig. 4 a). Conditions with values of Upeak f pred and P between these classes 331 

were not covered during the experiments. 332 

 333 

2.4 Videography and analysis of plant movement  334 

Video cameras were installed behind the lateral observation window 6 m from the front of the 335 

vegetated test section (Fig. 2). These cameras recorded the movement of Puccinellia and Elymus at 336 

bed level simultaneously to the records of wave orbital velocities in both canopies. Images were 337 

continuously acquired at a frequency of 10 Hz.  338 

Plant behaviour characteristics for swaying and whip-like movement under wave motion have been 339 

reported elsewhere (Bradley and Houser 2009; Manca 2010) and are illustrated in Fig. 2. However, it 340 

should be noted that many transitional states exist between these two main types of plant 341 

movement. We analyzed plant movement from plant bending angles in the direction of wave travel 342 

(hereafter referred to as ‘forward’ direction), and counter to direction of wave travel (hereafter 343 

referred to as ‘backward’ direction), and the time of maximum stem extension, using ‘Kinovea’ video 344 

analysis software (Kinovea 0.8.15, © 2006 - 2011 - Joan Charmant & Contrib.). The maximum 345 

bending angle of stems in, forward and backward direction was measured with the ‘angle 346 

measurement tool’ in ‘Kinovea’. The time of maximum stem extension was assessed through frame-347 
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by-frame tracking of individual plant stems. In ‘Kinovea’ tracking of objects (here plant stems) is a 348 

semi-automatic process. After manually choosing a well distinguishable point on a plant stem, the 349 

point location is computed automatically by recording x (horizontal) and y (vertical) coordinates in 350 

pixels. The tracking process can be interrupted and manually adjusted at any time. In each wave test, 351 

we recorded stem movement for an interval of 10 – 20 s at the same location in the canopy, thus 352 

capturing plant movement under at least four waves. In tests with medium and high hydrodynamic 353 

energy, fast canopy movement and high water turbidity, the point location needed to be manually 354 

adjusted several times during the tracking process. This may have caused a lower precision of the 355 

video analysis in these wave tests. In addition to the analysis of plant movement, the minimum 356 

height of the submerged canopy (i.e. canopy height resulting from the maximum bending angle of 357 

stems in direction of wave travel) was determined using a measuring tape fixed to the observation 358 

window of the flume. 359 

 360 

2.5 Quantification of wave orbital velocities 361 

Time-series data of orbital velocity under regular non-breaking waves were used to evaluate the 362 

effect of canopy movement of Puccinellia and Elymus (observed with the video cameras) on orbital 363 

velocities near the sediment bed. The mean peak velocity, both in the direction of wave travel i.e. in 364 

‘forward’ direction (mean peak forward velocity, Upeak f) and counter to the direction of wave travel 365 

i.e. in ‘backward’ direction (mean peak backward velocity, Upeak b), were quantified from the 366 

horizontal velocity component (component in direction of wave travel) recorded with the EMCMs at 367 

a height of 15 cm above the bed. Tt do so, the peak velocities, both in forward and backward 368 

direction, were identified for each wave cycle within the complete time series and then averaged 369 

over all waves recorded during the respective test (96 ≤ N ≤ 148). 370 

In shallow water environments, wave shape changes with increasing wave height and wave 371 

period, from a symmetric sinusoidal pattern to an asymmetric trochoidal shape characterized by 372 

steep wave crests and shallower wave troughs. This change leads to asymmetry in forward and 373 

backward orbital velocity. The maximum drag force that can be imparted by the waves on the 374 

vegetation canopy under a specific level of wave energy is driven by the stronger orbital velocity in 375 

forward direction under the wave crests. For this reason, we focused on Umax recorded within 376 

canopies of Puccinellia and Elymus when comparing the responses of the different canopies to wave 377 

forcing in terms of movement and their capacities to lessen orbital velocities. 378 

To assess the effect of the presence of Puccinellia and Elymus on orbital velocities as opposed to 379 

unvegetated conditions, we compared Upeak f measured within both canopies with Upeak f when the 380 

canopies were mowed. Differences in orbital velocities between Puccinellia and Elymus, as well as 381 
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between vegetated and mowed conditions, were analyzed for each wave test (96 ≤ N ≤ 148) with t-382 

tests calculated in R 3.1.0 (R Development Core Team, Vienna, AT).  383 

 384 

 385 

2.6 Quantification of physical damage of the vegetation canopy 386 

To assess the physical damage occurring to the vegetated test section as a whole, all floating biomass 387 

was collected by net (1 cm mesh) from the water surface at the end of each test, dried and weighed. 388 

After the last wave test under vegetated conditions, the whole vegetated test section was mowed to 389 

a stem height of 2 – 3 cm (see also section 2.2). To quantify the total dry weight of biomass on the 390 

test section, the dry weight of the mowed biomass was added to the dry weight of the floating 391 

biomass recovered over ithe course of the experiment. 392 

To assess the physical damage to the Elymus canopy, the number of Elymus stems remaining 393 

was counted each time when the flume was drained and the plants emergent. The prerequisite of a 394 

stem to be counted was that it was not broken, i.e. stems that were folded but not broken were also 395 

counted. Stems were counted at 18 quadrats of 10 x 10 cm located within a distance of 0.7 m into 396 

the vegetated test section from the flume side wall. The quadrats were distributed in six sets of three 397 

replicates from the front to the rear end of the vegetated test section with two of these sets (i.e. six 398 

quadrats) located in the front, middle and rear part of the vegetated test section and accessed from 399 

a small walkway along one of the flume side walls. The assessment of physical damage to the Elymus 400 

canopy as described here was conducted separately from the quantification of stem density for the 401 

quantification of biophysical properties of Elymus (see section 2.1).  402 

Physical damage to the Puccinellia canopy was assessed from photographs of the Puccinellia 403 

canopy each time the flume was drained at a location close to where the EMCM in the Puccinellia 404 

canopy was deployed. 405 

 406 

3 Results 407 

3.1 Canopy movement and orbital velocity in Puccinellia and Elymus  408 

At low orbital velocity both the Puccinellia and Elymus canopy showed a swaying movement under 409 

wave motion with similar mean peak forward orbital velocitiy (Upeak f) and mean peak backward 410 

orbital velocity (Upeak b) (Fig. 4, Table 3).  411 

At medium orbital velocity, larger differences in Upeak f occurred between Puccinellia and Elymus. 412 

These differences were associated with the folding of Elymus stems, the transition of swaying to 413 

whip-like movement in Puccinellia and long wave periods (4 – 5 s). 414 
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Folding of Elymus stems was first observed at Upeak f pred = 42 cm s-1, corresponding to a wave 415 

height of 0.4 m and a wave period of 4.1 s (Fig. 4, wave test 10 in Table 2). Here the bottom stem 416 

parts bent to around 30°, while the upper more flexible stem parts folded over at around 8 cm above 417 

the bed, resulting in a wide bending angle (80 – 90°) of the Elymus canopy as a whole. In comparison, 418 

Puccinellia showed a bending angle of 50° (Table 3). The more upright posture of the Puccinellia 419 

canopy resulted in a greater flow resistance and an 18 cm s-1 (37%) lower orbital velocity under wave 420 

forward motion than in Elymus. Time trace analysis of plant stem movement indicated a phase 421 

difference of around 20 – 40° between canopy movement and wave motion in both the Puccinellia 422 

and the Elymus canopy (for an illustration of canopy movement and water motion see Appendix Fig. 423 

A.1). At Upeak f pred = 62 cm s-1 the transition from swaying to whip-like movement occurred in 424 

Puccinellia (Fig. 4, wave test 12 in Table 2). The wide bending angles in the direction of wave travel 425 

(approximately 60°) and the long duration of maximum stem extension (approximately 1.5 s) allowed 426 

the flow to pass unimpeded over the deflected canopy the top of which was at a height of around 427 

9 cm above the sediment bed for a large part of the wave cycle. In contrast, Elymus showed a 428 

swaying movement with folding of stems approx. 6 cm above the bed (for an illustration of canopy 429 

movement and water motion see Appendix Fig. A.2). Whip-like movement of Puccinellia and hence a 430 

decrease in flow resistance led to a 26 cm s-1 (54%) higher orbital velocity under wave forward 431 

motion in comparison to Elymus (Table 2). 432 

At high orbital velocity both Puccinellia and Elymus exhibited a whip-like movement (Table 3). 433 

Upeak f in Puccinellia exceeded Upeak f  in Elymus by 5 – 18 cm s-1 (6 – 22%; Fig. 4, wave test 14 in Table 434 

2). During wave forward motion, both canopies were in a flattened ‘shielding posture’ (canopy height 435 

above the bed = 7 cm in Puccinellia, 5 cm in Elymus) and presumably provided low flow resistance. In 436 

both Puccinellia and Elymus a phase difference occurred between canopy movement and wave 437 

motion. In Elymus the phase difference was much larger (around 90°) than in Puccinellia (around 30 – 438 

40°, for an illustration of canopy movement and water motion see Appendix Fig. A.3). 439 

# Fig. 4 440 

#Table 3 441 

 442 

The Cauchy number Ca ranged in Puccinellia from 0.3 – 671 and in Elymus from 0.4 – 994 (Fig. 4, 443 

Table 4). Small differences (≤ 39) of Ca in both canopies at low orbital velocity reflect their similar 444 

response to hydrodynamic forcing in terms of canopy movement. From medium orbital velocity 445 

onwards differences of Ca in Puccinellia and Elymus increased (68 ≤ X ≤ 322) (Table 4) with higher 446 

values of Ca in Elymus compared to Puccinellia. The ratio of canopy height to wave orbital excursion L 447 

ranged in the low-growing Puccinellia from 42.9 – 0.3 and in the tall Elymus from 166.9 – 1.2. The 448 

onset of whip-like movement was at L = 0.6 in Puccinellia and at L = 1.8 in the Elymus canopy. 449 
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#Table 4 450 

 451 

3.2 Orbital velocity in Puccinellia and Elymus under vegetated and mowed 452 

conditions 453 

At low orbital velocity, presence of the Puccinellia canopy caused a small reduction (4 – 6 cm s-1, 454 

(-18 to -19 %)) and presence of the Elymus canopy a small increase in of Upeak f.(2 – 6 cm s-1 (+13 to 455 

+21 %)). With EMCMs measuring orbital velocity at a precision of ± 10 cm s-1 (see Methods section 456 

2.2) these small differences in Upeak f under vegetated and mowed conditions suggest a minor effect 457 

of vegetation presence on orbital velocity. 458 

At medium orbital velocity, the effect of Puccinellia and Elymus on Upeak f varied with water depth 459 

and wave period. Under a water depth of 2 m and long wave periods (4.1 s), when both Puccinellia 460 

and Elymus exhibited a swaying movement, we found Puccinellia to reduce Upeak f by 16 cm s-1 (35%). 461 

The Elymus canopy, where the folding of stems occurred, had no significant effect on Upeak f (Fig. 5, 462 

Table 4). Under a water depths of 1 m and short wave periods (2.9 s), Puccinellia caused an increase 463 

of Upeak f of 13 cm s-1 (+20%) and Elymus a decrease by 7 cm s-1 (-13%). This change in the effect of 464 

Puccinellia and Elymus on Upeak f occurred simultaneously with the transition from swaying to whip-465 

like canopy movement in Puccinellia (Fig. 4, 5).  466 

Finally at high orbital velocity, when both canopies exhibited a whip-like movement, Puccinellia 467 

and Elymus caused an increase of Upeak f by 5 cm s-1 (+13%) and 7 cm s-1 (+13%) respectively (Fig. 5, 468 

Table 4). 469 

Differences in Upeak f when the vegetation was mowed and the predicted peak forward velocity 470 

Upeak f pred as theoretical value of orbital velocity over  a flat, surface without vegetation ranged 471 

between 0.5 and 6.6 cm-1 (Table 4). This suggests Upeak f pred to be a good proxy for orbital velocities 472 

near the sediment bed in absence of vegetation.  473 

# Fig. 5 474 

 475 

3.4 Physical damage to the vegetation canopy 476 

Cumulatively around 45% of the total 98 kg of above ground biomass was lost under the wave forces 477 

applied in the experiment (Fig. 6). Photo documentation of Puccinellia and records of stem density in 478 

Elymus during the course of the experiment revealed that the two canopies differed in their 479 

susceptibility to plant stem breakage under increasing orbital velocities. The Puccinellia canopy with 480 

its high stem flexibility withstood the hydrodynamic forces without substantial damage (Fig. 7) 481 

whereas the Elymus canopy with its low flexibility experienced severe physical damage in the course 482 

of the experiment (Fig. 6). Folding and breakage of Elymus stems around 5 – 10 cm above the 483 
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sediment surface occurred from medium orbital velocities onwards (Upeak f pred ≥ 42 cm s-1 484 

corresponding to wave heights ≥ 0.4 m). In total, a loss of approximately 80% of Elymus stems was 485 

observed on the 18 10 x 10 cm quadrats distributed over the length of the vegetated test section 486 

(Fig. 6). No significant difference was found between stem loss in quadrats in the front, middle and 487 

rear part of the vegetated test section (kruskal-wallis-test; chi-squared = 0.34, df = 2, p = 0.84). 488 

Wave tests with Upeak f pred of 30 – 76 cm s-1 and wave heights of 0.4 – 0.7 m on day 7 and day 8 of 489 

the experiment resulted in folding and breakage of 45% of Elymus stems (Fig. 6). This loss of Elymus 490 

stems occurred simultaneously with the largest share of biomass loss as averaged over the whole 491 

test section. Another 35% of Elymus stems were lost during wave tests from day 10 to 11, with wave 492 

heights up to 0.9 m and Upeak f pred up to 90 cm s-1. 493 

#Fig. 6 494 

#Fig. 7 495 

 496 

4 Discussion 497 

Understanding the mechanisms of vegetation-induced wave dissipation on the one hand, and 498 

vulnerability of the marshes to vegetation damage and erosion on the other hand, is of crucial 499 

importance to successfully predict and incorporate the wave dissipation capacity of salt marshes into 500 

coastal defence schemes (Howes et al., 2010; Leonardi et al., 2016; Luhar and Nepf 2016; Möller et 501 

al., 2014). The near-field scale experimental results presented in this paper provide clear evidence for 502 

differences in the interaction between each of two common salt marsh species, Puccinellia and 503 

Elymus, and forward orbital velocity near the bed as well as for differences in the susceptibility of 504 

both canopies to physical damage under rising orbital velocities and wave energy flux. Our findings 505 

provide insights in how the contribution of vegetation to wave dissipation and surface erosion 506 

protection varies with plant biophysical characteristics and hydrodynamic conditions and have 507 

implications for numerical modelling of the marsh wave dissipation capacity and salt marsh 508 

management schemes.  509 

 510 

4.1 Effect of Puccinellia and Elymus canopies on near-bed orbital velocities 511 

Low orbital velocity 512 

At low orbital velocities (Upeak f pred ≤ 32 cm s-1) and Ca values ≤ 120, our results suggest a minor effect 513 

of vegetation and its biophysical characteristics on near-bed orbital velocities and bed shear stress. 514 

Such findings were also reported by Neumeier and Amos (2006b) who measured a reduction of 515 

orbital velocity by 10 – 20% at low orbital velocities and wave energy (h ≤ 0.9 m, H ≤ 0.09 m) in 516 

Spartina anglica salt marshes of Eastern England, assuming this reduction to be of minor importance 517 
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for the deposition and erosion of sediments. Wave damping was also observed to be lower for waves 518 

of smaller height than for more energetic waves in Maza et al.’s (2015) laboratory experiment, in 519 

which Spartina anglica and Puccinellia maritima species were subjected to waves of between 0.12 520 

and 0.2 m height in < 1.0 m water depth.  521 

Medium orbital velocity 522 

At medium orbital velocities (Upeak f pred 42 ≤ Upeak f pred ≤ 63 cm s-1) and 141 ≤ Ca ≤ 473 we found 523 

larger differences in the effect of Puccinellia and Elymus on orbital velocity, caused by a different 524 

degree of ‘canopy flattening’ and different susceptibility to stem folding between the two  canopies. 525 

Differences in the response of Puccinellia and Elymus to medium orbital velocities are also reflected 526 

by larger differences in values of Ca between both canopies, compared to low orbital velocities. 527 

Lower values of Ca in Puccinellia in comparison to Elymus imply a greater ability of Puccinellia to re-528 

orientation after bending and hence a higher flow resistance. This holds true under a water depth of 529 

2 m and long wave periods (4.1 s), when stem folding was observed for the first time in Elymus. Here 530 

we found no significant effect of Elymus on orbital velocity. By contrast, Puccinellia caused a 531 

considerable decline in orbital velocity (-35%), a decrease that may enhance sediment deposition and 532 

decrease bed shear stress. In the field, reduction of orbital velocity by Puccinellia could even be 533 

higher given the lower stem flexibility of Puccinellia in the field compared to the flume (Table 1). In 534 

all of the other tests at medium orbital velocity however, higher orbital velocity in Puccinellia 535 

suggests a lower flow resistance compared to Elymus. This is presumably because the onset of whip-536 

like movement occurred in Puccinellia at lower (medium) orbital velocity than in Elymus, an effect 537 

that could not be captured by the calculation of Ca.  538 

The transition from swaying to whip-like movement occurred in Puccinellia at a value of Ca = 319 539 

and L = 0.6 and hence at a greater wave orbital excursion and higher orbital velocities as assumed for 540 

flexible aquatic vegetation, where properties of whip-like movement are postulated to only start to 541 

occur at L values of  = 1 (Luhar and Nepf, 2016). In Elymus the transition to whip-like movement 542 

occurred at Ca = 664 and L = 1.8, suggesting that folding of stems may favour the onset of whip-like 543 

movement.  544 

High orbital velocity 545 

 At high orbital velocities (Upeak f pred ≥ 74 cm s-1) and 449 ≤ Ca ≤ 994 both Puccinellia and Elymus 546 

caused an increase of orbital velocity compared to mowed conditions and exhibited a whip-like 547 

movement. The reconfiguration of canopies to a flattened ‘shielding’ posture, close to the soil 548 

surface for a large part of the wave cycle, can be expected to protect the bed from erosive processes. 549 

However, high orbital velocities above the canopy may reduce the chance of sediment particles 550 

settling on the bed, thus leading to a passive protective role of the canopy rather than an active 551 

sediment-enhancing role (Neumeier and Ciavola 2004; Peralta et al., 2008).  552 
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Apart from high orbital velocities, waves and water levels, long wave periods (4 – 8 s) are 553 

characteristic for storm surges. The dependence of wave-vegetation interactions on wave period has 554 

been observed in many flume, field and modelling studies (Bradley and Houser 2009; Jadhav et al., 555 

2013; Lowe et al., 2007; Mullarney and Henderson 2010; Paul and Amos 2011; Maza et al., 2015). It 556 

has been suggested that depending on the biophysical properties of the plant species, canopies can 557 

act as a band-pass filter preferentially damping short or long-period waves while intermediate 558 

frequencies pass more easily (Mullarney and Henderson 2010). Moreover, it is to be expected that 559 

biophysical plant characteristics impact most on the vegetation-wave interactions at long-period 560 

waves as those tend to have larger velocities throughout the water column than short period waves 561 

(Anderson et al., 2011).  562 

Our results show that in contrast to medium orbital velocities and long wave periods, where 563 

Puccinellia and Elymus differed in the degree of canopy flattening and ability to reduce orbital 564 

velocity, at high orbital velocities and a wave period of 5.1 s, both Puccinellia and Elymus took a 565 

flattened posture and caused an increase in orbital velocity compared to mowed conditions. 566 

However, both canopies showed differences in their capacity to provide resistance due to relative 567 

motion between plants and water (i.e. the phase difference between canopy and water movement). 568 

The greater phase difference and lower values of mean peak forward orbital velocity suggest a higher 569 

resistance, and hence greater potential for flow and wave dissipation, in the presence of an Elymus 570 

canopy.  571 

In summary, our results imply a species-specific vegetation control on near-bed orbital velocities, 572 

sediment transport and deposition at medium orbital velocities, at least at spatial and temporal 573 

scales on which other controls, such as sediment supply and incident hydrodynamic conditions can 574 

be assumed to be relatively invariant (French and Spencer 1993). These insights add an additional 575 

dimension to existing laboratory studies with real vegetation but relatively low energy conditions 576 

(depths ≤ 1m; H ≤ 0.2 m) in which vegetation density may exert a greater control than species 577 

flexibility on wave dissipation (Maza et al., 2015). Our results suggest, however, that the type of 578 

vegetation movement which is linked to plant flexibility, remains critical in determining plant-wave 579 

interactions and the effects of this interaction on orbital velocity.   580 

 581 

#Table 4 582 

 583 

4.2 Susceptibility of salt marsh vegetation to physical damage under 584 

increasing wave forces 585 
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Throughout the experiment the salt marsh vegetation canopy as a whole experienced moderate 586 

physical damage and the sediment surface withstood large wave forces without substantial erosion 587 

(Möller et al., 2014; Spencer et al., 2016). This suggests a high resilience of sediment surfaces under a 588 

vegetated salt marsh canopy to storm surge conditions. With the root mat remaining intact, damage 589 

to the vegetation canopy reported in this paper can be considered to be of a temporary nature 590 

meaning that recovery may be expected during the next growing season. This is especially valid for 591 

plant species that can reproduce by clonal growth, a characteristic of both the grass species 592 

investigated in this study. However, recovery is unlikely to occur between storms clustered over a 593 

short interval in the order of weeks, particularly likely in northern winter months when most storm 594 

surges occur (Cusack, 2016). The latter may have implications for the coastal protection value of the 595 

marsh for reoccurring storms or storms of longer duration (several days). Indeed a recent global 596 

analysis on salt marsh erosion and wave measurements by Leonardi et al., (2016) revealed that most 597 

of salt marsh deterioration is caused by moderate storms of a monthly frequency while violent 598 

storms and hurricanes occurring at a decadal timescale contribute less than 1% to long-term salt 599 

marsh erosion rates. Moreover interior marsh surfaces as investigated in our study have been shown 600 

to be much less responsive to wave action than fringing marshes (Fagherazzi 2013; Fagherazzi et al., 601 

2013; Feagin et al., 2009). Further studies are needed to investigate the links between vegetation 602 

and root system characteristics, organic matter dynamics and the erosion stability of marsh edges. 603 

The canopies of Puccinellia and Elymus differed in their susceptibility to stem folding and 604 

breakage under increasing orbital velocities and wave energy flux. The very low amount of physical 605 

damage occurring to Puccinellia can be attributed to its very flexible stems allowing reconfiguration 606 

of the canopy to a flat shielding posture close to the bed under high orbital velocities (cf. 607 

observations in Bouma et al. 2010; Bouma et al. 2013). A similar strategy to survive under high flow 608 

and wave-induced velocities by avoiding high drag forces through reconfiguration is also known for 609 

flexible sea grasses (Infantes et al., 2011; Peralta et al., 2008) and freshwater macrophytes (O'Hare et 610 

al., 2007; Puijalon et al., 2011; Robionek et al., 2015). 611 

Providing low flow resistance, the direct contribution to hydrodynamic energy dissipation by 612 

very flexible plants is small. At the water-sediment interface, however, the flattened plant canopies 613 

under high velocities, reduce friction forces and contribute, along with plant roots and sediment 614 

organic matter content, to the stabilization of  sediment surface and long-term marsh stability 615 

(Neumeier and Ciavola 2004; Peralta et al., 2008).  616 

In contrast to Puccinellia, the less flexible and tall Elymus canopy experienced folding and 617 

subsequent breakage of stems from medium orbital velocities and above. Turbulence around stumps 618 

remaining on the marsh surface after stem breakage can increase bed shear stress and bed erosion 619 

through local scour. This is confirmed by a study of Spencer et al., (2016) who investigated soil 620 
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surface elevation change in the framework of the present flume experiment. They found surfaces 621 

covered by the flattened canopy of Puccinellia experienced a lower and less variable elevation loss 622 

than those characterized by Elymus. The  susceptibility of Elymus stems to breakage in the field under 623 

high orbital velocity may be even higher than that observed in this experiment. On the other hand, 624 

the cumulative effects of wave forces on the Elymus canopy could also imply that the stem loss 625 

experienced at medium orbital velocities enhanced the susceptibility of Elymus to folding and 626 

breakage at high orbital velocities compared to similar velocities under field conditions.  627 

Physical damage and hence a decline in flow resistance of Elymus from medium orbital velocities 628 

onwards observed in this study coincided with a leveling-off in the wave-dissipation capacity of the 629 

vegetated test section as a whole (Möller et al., 2014). With Elymus covering the largest part of the 630 

vegetated test section (around 70%) in this flume experiment, this result suggests that changes in 631 

vegetation-wave interactions may exert an important control on wave dissipation by salt marshes 632 

under increasing orbital velocities and wave energy flux. 633 

 634 

5 Conclusions 635 

In this paper, we investigated salt marsh vegetation-wave interactions over a wide range of wave 636 

conditions, from low to high wave orbital velocities and wave energy flux and in a near-field scale 637 

flume experiment. The results of our study show that canopy height and flexibility, as well as incident 638 

wave heights, wave periods and water depth, play an important role in the way vegetation interacts 639 

with waves. Furthermore, for the conditions and plant species tested here, the ability of vegetation 640 

to reduce near-bed wave orbital velocities and vegetation susceptibility to breakage varied with plant 641 

biophysical characteristics from an orbital velocity of 42 cm s-1 onwards. To profit from the benefits 642 

that plant species differing in biophysical characteristics provide in terms of wave dissipation and 643 

surface erosion protection under storm surge conditions, management schemes should aim for the 644 

maintenance of plant species diversity. Given the large variability in biophysical properties between 645 

salt marsh plant species (Feagin et al., 2011; Rupprecht et al., 2015a) it is recommended that further 646 

studies focus on the behavior of a wider range of salt marsh canopies, ideally under the full range of 647 

water depth and wave conditions that can be expected to occur on coasts periodically impacted by 648 

severe storms. While Elymus athericus and Puccinellia maritima are common species in the NW 649 

European region, the occurrence of mono-specific stands of Spartina anglica and Spartina 650 

alterniflora along the coastline of the United States and China, as well as NW Europe, calls for a 651 

separate investigation of vegetation-wave interactions in these types of marshes. Such studies are 652 

needed because these species often feature in coastal wetland creation schemes (Borsje et al., 2011; 653 

Kabat et al., 2009; Temmerman et al., 2013). Knowledge on species-specific thresholds of orbital 654 

velocities and wave energy flux marking changes in flow resistance, as well as future studies 655 



21 
 

providing such thresholds for mixed canopies, might then inform modelling studies generating 656 

predictions of marsh stability and resilience over longer time-scales, feeding into the growing body of 657 

knowledge that will ultimately allow salt marshes to be fully and effectively incorporated into coastal 658 

protection schemes. 659 
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Figures 844 

Figure 1 845 
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 857 

 858 

Fig. 1: Canopies of the salt marsh grasses (a) Puccinellia maritima and (b) Elymus athericus at the 859 

North Sea Coast in Eastern Frisia, Germany. 860 
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Figure 2 873 

 874 

 875 

Fig. 2: Large scale flume experiment conducted by Möller et al. (2014). (a) General experimental 876 

setup in the GWK (Großer Wellenkanal, Hannover) wave flume, (b) top view of the flume section 877 

where vegetation-wave interactions in the canopy of Puccinellia and Elymus were analyzed. 878 

 879 
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Figure 3 881 

 882 

 883 

Fig. 2: Schematic of plant movement under wave motion. (a) Bending angles and stem extension 884 

under swaying movement characteristic for low to medium orbital velocities and wave energy flux, (b) 885 

bending angles and stem extension under whip-like movement characteristic for high orbital 886 

velocities and wave energy flux.  887 

 888 

 889 

 890 

  891 
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Figure 4 892 

 893 

 894 

Fig. 4: (a) Wave energy flux as a function of the predicted peak forward orbital velocity / Relationship 895 

between predicted peak forward orbital velocity and wave energy flux and (b) measured peak 896 

forward orbital velocity in Puccinellia and Elymus and range of the Cauchy number (Ca, ratio of the 897 

hydrodynamic forcing to the restoring force due to plant stiffness) under low, medium and high 898 

predicted peak forward orbital velocity. Error bars refer to the mean ± 1 SD of time series 899 

measurements over the complete wave test (96 ≤ N ≤ 148).  900 

 901 

 902 
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Figure 5 904 

 905 

 906 

Fig. 5: Mean peak forward orbital velocity (Upeak f) in Puccinellia and Elymus relative to mowed 907 

conditions under low, medium and high predicted peak forward orbital velocity. Negative values 908 

indicate a reduction, positive values an increase in (Upeak f) due to presence of Puccinellia and Elymus. 909 

Hatched columns indicate conditions where no significant differences (t-test; p> 0.01) between Upeak f 910 

under vegetated and mowed conditions were found. 911 

  912 
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Figure 6 913 

 914 

 915 

 916 

Fig. 6: Total dry plant biomass remaining on the 40 m vegetated test section (see Figure 2) in the 917 

flume (light grey bars) and number of Elymus stems (dark gray, mean ± 1 SD from 18 10 x 10 cm 918 

quadrats distributed over the test section) prior to the first wave test (day 0 of the experiment) and 919 

at the three time steps when the flume was drained in the course of the experiment (day 5, day 9 920 

and day 12).  921 

 922 
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Day 0 Day 5

Day 9 Day 12

Figure 7 924 

 925 

 926 

 927 

 928 

 929 

 930 

 931 

 932 

 933 

 934 

 935 

 936 

 937 

 938 

 939 

Fig. 7: Photo documentation of the Puccinellia canopy prior to the first wave test (Day 0) and at the 940 

three times when the flume was drained (Day 5, 9 and 12) in the course of the experiment. The 941 

photograph of Day 12 shows Puccinellia before the marsh platform was mowed i.e. at the end of 942 

wave tests with the vegetated marsh surface.  943 

  944 
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Tables 945 

Table 1: Biophysical characteristics (mean values  1 SD) of the Puccinellia and Elymus canopy at the 946 

test section in the flume and at the field site where the marsh blocks for the flume experiment were 947 

excavated. Young’s bending modulus and flexural rigidity and stem diameter were measured with N 948 

= 17 for Puccinellia and N = 18 for Elymus; stem height with N = 30 and stem density with N = 10 for 949 

both species. 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 

Stem flexibility 
Young’s bending 
Modulus [MPa] 

Stem flexibility 
Flexural rigidity 
[Nm2 x 10-5] 

Stem 
diameter 
[mm] 

Stem 
height 
[mm] 

Stem 
density 
[number per 
m2] 

 Mean Mean Mean Mean Mean 

Puccinellia 
(Flume) 

111.6 ± 66.3 0.7 ± 0.2 1.1 ± 0.3 220 ± 30 – 

Puccinellia 
(Field) 

284.5 ± 369.1 2.1± 1.7 1.2 ± 0.2 180 ± 30 – 

Elymus 
(Flume) 

2696.3 ± 1963.8 29.9 ± 18.4 1.3 ± 0.3 700 ± 10 1225 ±575 

Elymus 
(Field) 

2514.7 ± 2977.1 56.9 ± 20.7 1.7 ± 0.4 800 ± 10 1700 ±200 
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Table 2: Hydrodynamic conditions simulated with regular non-breaking waves in the flume 960 

experiment. Mean wave height (H), water depth above the marsh platform (h), mean wave period (T), 961 

energy flux per meter crest length (P), mean peak forward orbital velocity predicted from wave 962 

parameters (Upeak f pred) and mean peak forward and backward orbital velocity (Upeak f, Upeak b) recorded 963 

within canopies of Puccinellia and Elymus. Wave tests which were repeated after mowing of the 964 

marsh platform are shaded in grey. Statistical significance of differences between Puccinellia and 965 

Elymus in in Upeak f (Δ Upeak f) and Upeak b (Δ Upeak b) verified with t-tests based on (96 ≤ N ≤ 148) waves. 966 

Non significant differences between species (p > 0.05) in Upeak f and Upeak b are marked with ‘ns’. 967 

 968 

 969 

 970 

 971 

 972 

 973 

 974 

 975 

 976 

 977 

 978 

 979 

 980 

 981 

Test 
no. 

Orbital 
velocity 
class 

Upeak f 

pred 

[cm s-1] 

P  
[kW 
m-1] 

h 
[m] 

H  
[m] 

T 
[s] 

Upeak f  

[cm s-1] (mean ± 1 SD) 
Upeak b 

[cm s-1] (mean ± 1 SD) 
Day 
 

       Puccinellia Elymus Δ 
Upeak f 

Puccinellia Elymus 
Δ 

Upeak b 

 

1 Low 1.8 0.02 2 0.1 1.5 1.9 ± 0.6 2.3 ± 0.6 0.4 -2.8 ± 0.6 -2.2 ± 0.5 0.3 1 

2 Low 10.0 0.08 2 0.2 2.1 8.9 ± 0.7 9.1 ± 0.6 0.2 -10.4 ± 0.7 9.6 ± 0.7 0.8 1 

3 Low 16.2 0.13 2 0.2 2.9 15.2 ± 0.8 15.5 ± 0.9 0.3 -15.9 ± 1.0 -14.6 ± 0.9 1.3 1 

4 Low 16.4 0.13 2 0.2 2.9 16.0 ± 0.9 15.5 ± 0.8 0.5 -15.9 ± 1.1 -13.5 ± 1.4 2.4 3 

5 Low 19.8 0.22 2 0.3 2.5 16.5 ± 0.8 20.5 ± 1.6 4.0 -17.7 ± 1.1 -18.2 ± 2.1 0.5 3 

6 Low 23.7 0.07 1 0.2 2.1 17.2 ± 1.0 21.9 ± 1.2 4.7 -19.8 ± 1.1 -18.9 ± 1.2 1.0 4 

7 Low 28.8 0.36 2 0.3 3.6 24.2 ±1.2 32.6 ± 3.2 8.4 -20.5 ± 1.5 -24.1 ± 3.5 3.6 3 

8 Low 31.4 0.12 1 0.2 2.9 25.1 ± 1.4 30.1 ± 2.4 5.0 -21.5 ± 1.5 -24.4 ± 2.6 2,9 4 

9 Low 31.6 0.48 2 0.4 2.9 27.2 ± 3.1 32.9 ± 3.3 5.7 -30.5 ± 2.1 -25.5 ± 2.5 5.0 7 

10 Medium 41.6 0.71 2 0.4 4.1 29.4 ± 1.7 47.9 ± 7.3 18.5 -34.1 ± 1.8 -38.9 ± 5.4 4.8 7 

11 Medium 56.6 1.36 2 0.6 3.6 63.2 ± 6.7 
64.3 ± 
11.5 

ns -48.6 ± 2.4 -46.7 ± 9.4 ns 7 

12 Medium 62.7 0.47 1 0.4 2.9 74.2 ± 6.5 48.2 ± 8.7 26.0 -41.5 ± 2.9 -50.5 ± 8.7 9.0 8 

13 High 74.3 0.65 1 0.5 3.3 98.5 ± 16.8 83.5 ± 9.2 5.0 -50.5 ± 9.2 -48.2 ± 9.2 2.3 11 

14 High 76.2 2.31 2 0.7 5.1 101.4 ± 7.0 
83.2 ± 
17.1 

18.2 -41.0 ± 3.1 -37.2 ± 10.1 3.8 8 

15 High 90.9 3.39 2 0.9 4.1 100.9 ± 12.6 95.4 ± 9.8 5.5 -73.7 ± 4.4 62.8 ± 9.5 10.9 10 
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Table 3: Observed characteristics of vegetation-wave interactions, Cauchy number (Ca; ratio of the 982 

hydrodynamic forcing to the restoring force due to plant stiffness), ratio of canopy height to wave 983 

orbital excursion (L) and effect of vegetation on peak forward orbital velocity (Upeak f) in Puccinellia 984 

(Pucc) and Elymus (Ely). Wave tests that were repeated after mowing of the marsh platform are 985 

shaded in grey. Due to high water turbidity bending angles could not be measured for either 986 

Puccinellia or Elymus in the wave test 13 nor for Puccinellia in the wave test 11.  987 

 988 

 989 

Test 
no. 

Orbital 
velocity 
class 

Upeak f 

pred 

 [cm 
s-1] 

h 
[m] 

H 
[m] 

T 
[s] 

Movement 
Bending angle 
in/counter wave 
travel 

Ca  L 
Effect on Upeak f 
compared to mowed 
conditions 

      Pucc Ely Pucc Ely Pucc Ely Δ Ca Pucc Ely Pucc Ely 

1 
Low 1.8 2 0.1 1.5 No No 

upright 
canopy 

upright 
canopy 

0.3 0.4 0.1 42.9 166.9 
- - 

2 
Low 10.0 2 0.2 2.1 SW SW 10°/10° 5°/5° 8.0 11.4 

3.9 5.4 21.0 
- - 

3 
Low 16.2 2 0.2 2.9 SW SW 20°/20° 10°/10° 

21.5 31.8 10.3 2.4 9.3 
- - 

4 
Low 16.2 2 0.2 2.9 SW SW 20°/20° 10°/10° 

21.8 32.3 10.5 2.4 9.2 
- - 

5 
Low 19.8 2 0.3 2.5 SW SW 20°/20° 10°/10° 

31.9 47.2 15.3 2.3 8.9 
- - 

6 
Low 23.7 1 0.2 2.1 SW SW 20°/20° 10°/10° 

45.6 67.5 21.9 2.3 8.8 
RED INC 

7 
Low 28.8 2 0.3 3.6 SW SW 35°/35° 25°/25° 

67.80 100.4 32.6 1.1 4.2 
- - 

8 
Low 31.4 1 0.2 2.9 SW SW 35°/35° 15°/15° 

80.00 118.5 38.5 1.2 4.8 
- - 

9 
Low 31.6 2 0.4 2.9 SW SW 40°/40° 20°/20° 

81.4 120.5 39.1 1.2 4.8 
RED INC 

10 
Medium 41.6 2 0.4 4.1 SW SW 50°/50° 

Stem 
folding 

140.6 208.2 67.5 0.7 2.6 
RED NS 

11 
Medium 56.6 2 0.6 3.6 - SW - 

Stem 
folding 

260.9 386.1 125.
3 

0.6 2.2 
NS INC 

12 
Medium 62.7 1 0.4 2.9 WP SW 60°/35° 

Stem 
folding 

319.3 472.6 153.
3 

0.6 2.4 
INC RED 

13 
High 74.3 1 0.5 3.3 WP WP - - 

448.9 664.5 215.
6 

0.5 1.8 
- - 

14 
High 76.2 2 0.7 5.1 WP WP 60°/25° 

Stem 
folding 

472.5 699.4 226.
9 

0.3 1.1 
- - 

15 
High 90.9 2 0.9 4.1 WP WP 60°/25° 

Stem 
folding 

671.4 993.7 322.
4 

0.3 1.2 
INC INC 

Abbreviations used in Table: SW = Swaying movement; WP = Whip-like movement; RED = reduction; INC = increase;  990 
NS = no significant effect 991 
  992 
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Table 4: Mean peak forward orbital velocity (Upeak f) within canopies of Puccinellia and Elymus and 993 

when both canopies were mowed. Statistical significance of differences between Upeak f under 994 

vegetated and Upeak f under mowed conditions in Puccinellia and Elymus respectively (Δ UPucc, Δ UEly) 995 

was verified with t-tests based on (96 ≤ N ≤ 148) waves. Negative values of Δ UPucc and Δ UEly indicate 996 

a reduction, positive values an increase of Upeak f due to vegetation presence. Non significant values 997 

(p > 0.01) are marked with ‘ns’. 998 

 999 

Test 
no. 

Orbital 
velocity 
class 

Upeak f pred 

[cm s-1] 
h 
[m
] 

H  
[m
] 

T 
[s] 

Puccinellia 
Upeak f  

[cm s-1] (mean ± 1 SD) 

Elymus 
Upeak f  

[cm s-1] (mean ± 1 SD) 
      vegetated mowed Δ UPucc Vegetated mowed Δ UEly 

6 Low 24.7 1 0.2 2.1 17.2 ± 1.0 21.0 ± 1.8 -3.8 21.9 ± 1.2 19.5 ± .3 2.4 

9 Low 31.6 2 0.4 2.9 27.2 ± 3.1 33.6 ± 3.1 -6.4 32.9 ± 3.3 27.2 ± .5 5.7 

10 Medium 42.3 2 0.4 4.1 29.4 ± 1.7 45.6 ± 2.0 - 16.2 47.9 ± 7.3 43.5 ± .7 ns 

11 Medium 58.3 2 0.6 3.6 63.2 ± 6.7 64.4 ± 3.6 ns 64.3 ± 1.5 57.2 ± .5 7.1 

12 Medium 61.9 1 0.4 2.9 74.2 ± 6.5 61.4 ± 3.5 12.8 48.2 ± 8.7 55.3 ± .0 -7.1 

15 High 90.1 2 0.9 4.1 100.9 ± 2.6 96.0 ± 5.6 4.9 95.4 ± 9.8 78.9 ± .9 16.5 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 

 1008 
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 1022 

Appendix 1023 

A.1 1024 

 1025 

Fig. A.1: Vegetation-wave interactions under medium orbital velocity (predicted peak forward orbital 1026 

velocity 42 cm s-1), water depth (h) = 2 m, wave height (H) = 0.4 m and wave period (T) = 4.1 s (wave 1027 

test 10, Table 2). Water pressure (left y-axis), orbital velocity and time trace of horizontal stem 1028 

extension (right y-axis; positive values in the direction of wave motion). (a) Swaying movement of the 1029 

Puccinellia canopy and (b) Swaying movement of the Elymus canopy, both recognizable from similar 1030 

bending angles and orbital velocities in forward and backward direction of wave-induced oscillatory 1031 

flow. Note that due to stem folding lower stem parts of Elymus bent to smaller angles (30°) than 1032 

upper more flexible stem parts resulting in bending angles of 90° of the Elymus canopy as a whole 1033 

Mean peak forward orbital velocity in Puccinellia with its intact stems was 40% lower than in Elymus 1034 

where folding of stems occurred (see Fig. 4). 1035 
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 1041 

Fig. A.2: Vegetation-wave interactions under medium orbital velocity (predicted peak forward orbital 1042 

velocity 63 cm s-1) water depth (h) = 1 m, wave height (H) = 0.4 m and wave period (T) = 2.9 s (wave 1043 

test 12, Table 2). Water pressure (left y-axis), orbital velocity and time trace of horizontal stem 1044 

extension (right y-axis; positive values in direction of wave motion). (a) Whip-like movement of the 1045 

Puccinellia canopy recognizable from wide bending angles and high orbital velocity in forward 1046 

direction of wave-induced oscillatory flow. (b) Swaying movement of the Elymus canopy recognizable 1047 

from similar bending angles and orbital velocities in forward and backward direction of wave-induced 1048 

oscillatory flow. Note that due to stem folding lower stem parts of Elymus bent to smaller angles (45°) 1049 

than upper more flexible stem parts resulting in bending angles of 90° of the Elymus canopy as a 1050 

whole. Following its whip-like movement mean peak forward orbital velocity in Puccinellia was 1051 

approx. 50% higher than in Elymus (see Fig. 4). 1052 
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 1059 

Fig. A.3: Vegetation-wave interactions under high orbital velocity (predicted peak forward orbital 1060 

velocity 76 cm s-1) water depth (h) = 2 m, wave height (H) = 0.7 m and wave period (T) = 5.1 s (wave 1061 

test 14, Table 2). Water pressure (left y-axis), orbital velocity and time trace of horizontal stem 1062 

extension (right y-axis; positive values in the direction of wave motion). (a) Whip-like movement of 1063 

the Puccinellia canopy and (b) whip-like movement of the Elymus canopy, both recognizable from 1064 

wide bending angles and high orbital velocity in forward direction of wave-induced oscillatory flow. 1065 

Note that due to stem folding lower stem parts of Elymus bent to smaller angles (45°) than upper 1066 

more flexible stem parts resulting in bending angles of 90° of the Elymus canopy as a whole. Mean 1067 

peak forward orbital velocity in Puccinellia was 20% higher than in Elymus (see Fig. 4). One reason for 1068 

this may be the lower phase difference between canopy movement and water motion in Puccinellia. 1069 
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