

Hanley, ME and Bouma, TJ and Mossman, HL (2019) The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat. Annals of Botany, 125 (2). pp. 197-212. ISSN 0305-7364

Downloaded from: http://e-space.mmu.ac.uk/625211/

Version: Published Version

Publisher: Oxford University Press (OUP)

DOI: https://doi.org/10.1093/aob/mcz204

Please cite the published version

The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat

Thank you for agreeing to review this paper for Annals of Botany. The Annals of Botany aims to be among the very top of plant science journals and as we receive over 1000 submissions every year we need to be very selective in deciding which papers we can publish. In making your assessment of the manuscript's suitability for publication in the journal please consider the following points.

Scientific Scope

Annals of Botany welcomes papers in all areas of plant science. Papers may address questions at any level of biological organization ranging from molecular through cells and organs, to whole organisms, species, communities and ecosystems. Its scope extends to all flowering and non-flowering taxa, and to evolutionary and pathology research. Many questions are addressed using comparative studies, genetics, genomics, molecular tools, and modeling.

To merit publication in Annals of Botany, contributions should be substantial, concise, written in clear English and combine originality of content with potential general interest.

- We want to publish papers where our reviewers are enthusiastic about the science: is this a paper that you would keep for reference, or pass on to your colleagues? If the answer is "no" then please enter a low priority score when you submit your report.
- We want to publish papers with novel and original content that move the subject forward, not papers that report incremental
 advances or findings that are already well known in other species. Please consider this when you enter a score for originality when
 you submit your report.

Notes on categories of papers:

All review-type articles should be **novel, rigorous, substantial and "make a difference" to plant science**. The purpose is to summarise, clearly and succinctly, the "cutting edge" of the subject and how future research would best be directed. Reviews should be relevant to a broad audience and all should have a **strong conclusion and illustrations** including diagrams.

- Primary Research articles should report on original research relevant to the scope of the journal, demonstrating an important
 advance in the subject area, and the results should be clearly presented, novel and supported by appropriate experimental
 approaches. The Introduction should clearly set the context for the work and the Discussion should demonstrate the importance of
 the results within that context. Concise speculation, models and hypotheses are encouraged, but must be informed by the results
 and by the authors' expert knowledge of the subject.
- Reviews should place the subject in context, add significantly to previous reviews in the subject area and moving forward research
 in the subject area. Reviews should be selective, including the most important and best, up-to-date, references, not a blow-by-blow
 and exhaustive listing.
- Research in Context should combine a review/overview of a subject area with original research, often leading to new ideas or
 models; they present a hybrid of review and research. Typically a Research in Context article contains an extended Introduction that
 provides a general overview of the topic before incorporating new research results with a Discussion proposing general models
 and the impact of the research.
- Viewpoints are shorter reviews, presenting clear, concise and logical arguments supporting the authors' opinions, and in doing so help to stimulate discussions within the topic.
- Botanical Briefings are concise, perhaps more specialised reviews and usually cover topical issues, maybe involving some controversy.

The gathering storm: optimizing management of coastal ecosystems in the face of a climate-driven threat

Mick E Hanley*¹, Tjeerd J Bouma^{2,3} & Hannah L Mossman⁴ 1 School of Biological and Marine Sciences, University of Plymouth, UK. mehanley@plymouth.ac.uk 2 Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, Korringaweg 7, 4401 NT Yerseke. 3 The Netherlands and Department of Physical Geography, Faculty of Geosciences, Utrecht University, P.O. Box 80115, 3508 TC Utrecht, The Netherlands 4 Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK *Author for correspondence: Dr Mick Hanley Tel: +44 (0) 1752 584631 E-mail: mehanley@plymouth.ac.uk Orchid ID 0000-0002-3966-8919 **Running Head:** Coastal plants and extreme storm events

24 ABSTRACT

- **Background** The combination of rising sea levels and increased likelihood of extreme storm events poses a major flood and erosion threat to our coastlines. As a result, many ecosystems recognized and valued for their important contribution to coastal defence, face increased damage from erosion and flooding. Nevertheless, only recently have we begun to examine how plant species and communities, respond to, and recover from, the many disturbances associated with storm events. **Scope** We review how the threats posed by a combination of sea level rise and storms affects coastal sub-, inter-, and supra-tidal plant communities. We consider
 - affects coastal sub-, inter-, and supra-tidal plant communities. We consider ecophysiological impacts at the level of the individual plant, but also how ecological interactions at community-level, and responses at landscape-scale, inform our understanding of how and why an increasing frequency and intensity of storm damage is vital to effective coastal management. While noting how research is centred on the impact of hurricanes in the US Gulf region, we take a global perspective and consider how ecosystems worldwide (e.g., seagrass, kelp forests, sand dunes, saltmarsh, mangroves) respond to storm damage and contribute to coastal defence.
 - Conclusions The threats posed by storms to coastal plant communities are undoubtedly severe, but beyond this obvious conclusion, we highlight four research priority areas.

 These call for studies focusing on (1) how storm disturbance affects plant reproduction and recruitment; (2) plant response to the multiple-stressors associated with ACC and storm events; (3) the role of ecosystem-level interactions in dictating post-disturbance recovery; and (4) models and long-term monitoring to better predict where and how

Coastal plants and extreme storm events

46	storms and other climate change-driven phenomenon impact coastal ecosystems and
47	services. In so doing, we argue how plant scientists must work with geomorphologists
48	and environmental agencies to protect the unique biodiversity and pivotal contribution
49	to coastal defence delivered by plant communities.
50	
51	Key Words: Coastal Erosion - Flooding – Hurricanes -Kelp – Mangrove – Pine savannah
52	Salt Marsh – Sand Dunes – Seagrass - Sea-Level Rise - Storm Surge – Wave Attenuation
53	
54	
55	
56	

57 INTRODUCTION

The past, present, and likely future impacts of Anthropogenic Climate Change (ACC) on 58 59 terrestrial plant species and communities are widely reported and reasonably well 60 understood (Parmesan and Hanley, 2015). Most studies focus on long-term, chronic effects, 61 but considerable environmental threat is likely to stem from an increased frequency and 62 intensity of acute, extreme events (Vasseur et al., 2014; Parmesan and Hanley, 2015). 63 Although chronic stressors doubtless reduce ecosystem resilience, for many coastal plant 64 communities the most important manifestation of ACC is likely to come from the acute disturbance, erosion, and flooding associated with storm events. 65 In their most recent assessment of our changing climate, the Intergovernmental Panel on 66 Climate Change (IPCC 2019) asserted that anthropogenically-driven Sea Level Rise (SLR), 67 in tandem with an increase in storm frequency and intensity, poses a severe environmental 68 threat to estuarine and coastal ecosystems (ECEs). Nonetheless, plant biologists have 69 70 recognized this threat only recently, and when combined with our inability to predict where and when storms might occur, it is perhaps no surprise that relatively few authors have 71 systematically addressed the issue. In-fact much of the initial relevant research was 72 73 conducted in the SE United States where low-lying freshwater wetlands regularly experience periodic seawater inundation as a result of isostatic movements and subsidence, 74 75 and changes in channel flow regime. Studies by Haller et al. (1974), McKee and 76 Mendelssohn (1989) and Flynn et al. (1995) reporting species-specific variation in Floridian and Louisianan freshwater marsh plants to 'natural' salinity pulses, were 77

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

nonetheless prescient of how these communities can be expected to respond to contemporary and predicted changes in frequency and intensity of ACC-linked extreme events. Subsequently, a body of work conducted around the Gulf of Mexico has described the responses of wetland vegetation to the disturbance associated with recent hurricanes (Tate and Battaglia, 2013; Meixler, 2017; Imbert, 2018). The realization that coastlines globally now face increasing erosion and flood risk provides the impetus for understanding how hurricanes, typhoons, cyclones and other extreme weather events affect coastal vegetation. Moreover, in many vulnerable locations, ECEs have 'added value' in that they offer natural coastal protection against erosion and flooding (Temmerman et al., 2013; Morris et al., 2018). This key ecosystem service has considerable socio-economic benefits, reducing flood risk and damage for a fraction of the costs associated with constructing so-called 'hard defences' like concrete walls (Narayan et al., 2016; Morris et al., 2018). Nonetheless, society is only just beginning to appreciate this valuable service and how ECEs can be integrated into a dynamic flood defence strategy. Consequently, understanding the response of vegetation to shifts in storm regimes is critical to ensure effective risk management over coming decades. With this mind, we offer here a synthesis of the response of ECE vegetation to extreme storm events, and signpost how an understanding of these responses aids management of ECEs for flood and erosion mitigation. We contextualize recent scientific studies by exploring the threats to, and response of, plants challenged by both SLR and increasing storm frequency and severity. This necessitates understanding ecophysiological responses from the level of the individual, up to geomorphological factors operating across the entire

tidal range. We highlight also future research priorities, from laboratory experiments to large-scale modelling and mapping of post-disturbance vegetation responses, needed to provide an appreciation of the wider ecosystem services delivered by coastal habitats. By bringing together this diversity of topics, our aim is not only to signpost interdisciplinary research towards better management of ECEs, but also promote their integration into strategic coastal defence.

THREATS TO COASTAL ECOSYSTEMS

Although historically, land use change, pollution, and invasive species have all impacted ECEs, and while these threats are certain to continue into the future, our focus is on ACC. Indeed, there seems little doubt that ACC will pose the greatest challenge to coastal habitats for the remainder of this century and beyond (Millennium Ecosystem Assessment, 2005). Although elevated atmospheric CO₂ (eCO₂), and associated shifts in temperature, and precipitation will have profound effects on all plant communities (Parmesan and Hanley, 2015), the combination of SLR, and increased sea surface temperatures (SST) and enhanced wave forcing is a particular pressing and unique issue for ECEs.

Rising sea levels have already affected many coastal regions. IPCC (2019) stated with 'high confidence' that the 0.32m increase in global sea levels observed between 1970-2015 was attributable to ACC-driven thermal expansion of the seas and glacier mass loss. It seems clear that SLR will accelerate into the 21st century, although IPCC (2019) have 'high confidence' that variation in ocean dynamics and coastal land-use will generate regional departures of about 30% around global averages. Not only does this place coastal regions

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

and habitats at significant (but varying) flood risk, there is 'high confidence' that SLR will continue for centuries, even if global mean temperatures are stabilized (IPCC, 2019). The ramifications of these changes are severe. IPCC (2019) has 'very high confidence' that lowlying coastal areas will increasingly experience submergence, flooding and erosion throughout this century and beyond. It is important however, to distinguish between the impacts of long-term, chronic changes in Earth's climate, and those imposed by acute ACC-linked events. Although an annual maximum predicted global SLR of 15 mm yr⁻¹ (IPCC 2019) poses problems for coastal plants due to landward/upward displacement of the freshwater-saltwater aquifer interface (White and Kaplan, 2017), SLR and extreme weather together are likely to deal the greatest environmental threat to our coastlines (IPCC, 2019). A combination of increased SST coupled with SLR, is widely predicted to increase the frequency, severity and geographical distribution of tropical cyclones and storm surge events (IPCC, 2019). Consequently, present-day 'one per century' sea level extremes are expected on an annual basis for most coastlines by 2100 (IPCC, 2019). Not only will many supra-tidal ECEs face an increased risk of short-duration, seawater inundation as a result, the wave energies and sediment disturbance associated with intense storm activity will impact the many ECEs that help protect coastlines. In addition, most coastal habitats are strongly inter-connected, such that acute erosion and sediment loss from one (e.g. a sub-tidal sand bar), has major repercussions for sediment transport to nearby supra-tidal habitat (e.g. sand dunes) (Hanley et al., 2014).

Indeed, where sufficient 'pre-event' data are available, studies show major changes in coastal geomorphology and vegetation for many years afterwards. Carter et al. (2018) for example, used a time series of remotely sensed images to show major breaching, land-area reduction, and vegetation loss throughout the Mississippi-Alabama barrier islands in the first 10 months after Hurricane Katrina made landfall. These changes were however, sitespecific depending on sediment removal or accretion, underscoring the more general problem that it is difficult to predict exactly how and when storms affect particular coastlines. For example, in the unusually energetic series of winter storms that affected SW England in 2013/4, the most severe impacts coincided with high spring tides and occurred on west-facing beaches where subsequent dune erosion was extensive (Masselink et al., 2015). Similarly, variation in wind directions meant a brackish marshland in Louisiana, USA, apparently unaffected by Hurricane Katrina in August 2005, experienced major seawater incursion following Hurricane Rita only a month later (Steyer et al., 2007). The spatio-temporal stochasticity associated with forecasting storm events presents a major limitation to our ability to predict where and when ECEs will be impacted. Nevertheless, it seems certain that ECEs globally can expect a significant increase in erosion and flood frequency and duration over coming decades. In Table 1, we summarize how the threats associated with extreme storms are likely to affect coastal habitats across the tidal range, and in the following sections, discuss how some of these key threats, exert major ecological effects on sublittoral, inter-tidal, and supra littoral habitats.

162

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

IMPACTS ON COASTAL PLANT COMMUNITIES

Supra-tidal Plant Communities 164 165 Vegetation subject to seawater immersion at exceptionally high tides or during storm surge events only. Affected habitats include sand dunes, and other (semi-)natural terrestrial and 166 aquatic ecosystems (grasslands, pine savannah, freshwater wetlands). 167 168 Due, in part, to our inability to predict where and when storm surges will occur, and even less effectively, control and replicate natural flood events, few field studies deal with the 169 170 impact of storm disturbance on supra-tidal plant communities. Although remote sensing 171 offers a way to assess and monitor largescale changes in vegetation following storm events (e.g. Carter et al., 2018; Douglas et al., 2018; Stagg et al., 2020), elucidating how saltwater 172 173 flooding, mechanical damage, litter accumulation, and sediments affect the plant 174 community is challenging. There is however, a relatively large body of research describing the (species-specific) effects of burial by sediments on sand dune species (Sykes and 175 176 Wilson, 1990; Harris et al., 2017; Brown and Zinnert, 2018), while Tate and Battaglia, (2013) and Platt et al., (2015) report major negative effects of simulated post-hurricane 177 litter deposition on Floridian and Mississippian pine savannah. Surprisingly however, few 178 179 studies consider the immediate effects of physical damage on supra-littoral coastal vegetation (see Platt et al., 2000). 180 The most widely reported impact of ACC-linked extreme events on supra-littoral ECEs is 181 seawater flooding. Immersion in seawater brings additional problems for supra-littoral 182 plants compared to those experienced by species in inland riparian, or coastal inter-tidal 183

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

communities. Flooding of the former is exclusively freshwater, while plants in most intertidal ECEs have an inherent ability to tolerate salinity associated with (twice-daily) tidal immersion. Although by virtue of their association with the coast, sand dune, cliff edge, and other supra-littoral plants may be tolerant of salt spray (Malloch et al., 1985; Sykes and Wilson 1988), the combination of anoxia and salt stress imposed by seawater flooding is unique to these habitats. In fact the 'salt stress' associated with coastal flooding seems to be much more important to plant response and recovery than anoxia. In experiments where supra-littoral plants have been simultaneously exposed to freshwater and seawater immersion, the former has never resulted in any noticeable impact on plant ecophysiology compared with untreated (no immersion) controls (Tolliver et al., 2009; Hanley et al., 2013, 2017, 2020a,b; White et al., 2014). A full appraisal of how and why salinity stress affects plant ecophysiology is beyond the scope of this review (see instead Flowers and Colmer, 2008; Munns and Tester, 2008; Negrão et al., 2017; the latter an excellent assessment of methods to evaluate plant physiological responses to salinity stress). In short however, high seawater salinity (of which chloride (55%) and sodium (31%) contribute most of the 'salt' content), causes both osmotic (limiting the plant's ability to absorb water) and ionic (increased toxicity via Na⁺ and Cl⁻ accumulation) stresses (Munns and Tester, 2008). It is worth bearing in mind though that our oceans have marked seasonal and regional salinity variation (Donguy and Meyers, 1996) and that seawater is much more than 'NaCl in solution'. Some ions such as K⁺ and Ca²⁺ have direct negative toxicological or osmotic effects, but also the potential to mitigate the impact of Na⁺ and Cl⁻ on plant metabolism (Flowers and Colmer, 2008; Munns

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

and Tester, 2008). It is likely that other ions have similar moderating influences over Na⁺ and Cl⁻ stress, and consequently, understanding how seawater affects plant ecophysiological responses requires much more than a simplistic evaluation of the effects of NaCl alone. This point was reinforced by **Hanley** et al., (2020a), who show how shortduration immersion of *Trifolium repens* in NaCl solutions elicited almost total mortality compared to plants subject to immersion in natural seawater or commercially available marine aquarium salt solutions. It is possible to monitor ECE recovery after a natural flood event (e.g. Flynn et al., 1995; Lantz et al., 2015), but this requires the ability to allocate resources quickly to an affected site in order to capture changes in vegetation as floodwaters recede. Moreover, to appreciate fully post-inundation transitions, a thorough understanding of the pre-flood ecosystem is also essential (Langston et al., 2017; Masselink et al., 2017). Some manipulative field experiments have been attempted, but logistical and even ethical issues mean these are uncommon (McKee and Mendelssohn, 1989; Tate and Battiglia, 2013; Abbott and Battiglia, 2015). Consequently, many studies employ controlled 'flooding' in greenhouse or 'common garden' experiments, although inevitably, experiments are constrained to focus on a limited species or habitat pool (van Zandt et al., 2003; Hanley et al., 2013, 2017, Li and Pennings, 2018). Many studies also impose long-term, or periodic, chronic salinity, rather than replicating the short-duration, acute immersion experienced immediately after a storm (Tolliver et al., 1997; van Zandt and Mopper 2002; van Zandt et al., 2003; Mopper et al., 2016; Li and Pennings, 2018). A further problem is that rather than use natural seawater, experiments are often undertaken using commercially available

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

marine aquarium salt or even NaCl solutions (Sykes and Wilson 1988; Flynn et al., 1995; Tolliver et al., 1997; Mopper et al., 2016), with no assessment of their validity as alternatives. In the second experiment described by **Hanley** et al., (2020a) however, six different European sand dune plant species showed remarkable uniformity in stress and ecophysiological responses to marine aquarium salt versus locally collected seawater. This consistency suggests that the chemistry of the former is indeed close enough to the latter to use marine aquarium salt as a reliable experimental substitute. Despite the various methodological problems, unsurprisingly perhaps, significant negative repercussions for plant survival, growth, and reproduction are apparent for plants subjected to seawater (or surrogate) immersion (van Zandt et al., 2003; Mopper et al., 2016; Hanley et al., 2017, 2020a,b; Li and Pennings, 2018; Lum and Barton, 2020). Mortality is common, but even where plants survive short-pulses of seawater exposure subsequent recovery is compromised. A typical response to the ionic and osmotic shock associated with salinity is the accumulation of stress metabolites (e.g. proline) and ions (Ca²⁺ and K⁺) to exclude or compartmentalize Na⁺ and Cl (Flowers and Colmer, 2008; Munns and Tester, 2008) (likely explaining why plant response to NaCl solution is more extreme than seawater which contains 1.2% Ca²⁺ and 1% K⁺). Even if achieved however, a cost on plant fitness is probably inevitable (Munns and Tester, 2008; White et al., 2014; Hanley et al., 2020a,b). Most importantly perhaps, the ability of plants to tolerate, and recover from, seawater flooding seems to be species-specific. Long-term observation of Arctic tundra following a major storm surge in the Mackenzie Delta, Canada, shows that dwarf shrub tundra had a

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

much-reduced regenerative capacity than graminoids or upright shrubs (Lantz et al., 2015 see also Middleton, 2009; Tate and Battiglia, 2013). Manipulative greenhouse experiments (Hanley et al., 2017, 2020a; Li and Pennings, 2018; Edge et al., 2020) generally corroborate field observations of species-specific variation. Working on two native Hawaiian plants, Lum and Barton (2020) for example, report not only species-specific variation in ecophysiological responses to increased salinity (imposed over 3-weeks), but also that tolerance increased for both species as plants aged. These observations represent a critical component of our understanding of plant response to the environmental pressures associated with SLR and storm surges. Not only is species-specific variation important, but it is essential to elucidate plant responses throughout ontogeny. Middleton (2009) for example describes species-specific variation in post-hurricane germination and recruitment ability of US Gulf Coast marshland species, a response ascribed principally to increased salinity. At the other end of the plant life cycle, Hanley et al., (2020b) report how immersion of oilseed rape (Brassica napus) in seawater reduced seed yield, and perhaps most importantly, that growth of the resulting seedlings was also greatly reduced in comparison with progeny cultivated from non-flooded or even freshwater-flooded parent plants. Although work in this area is anything but 'mature', these studies signpost flooding as a potential selective filter that could remove species from the post disturbance community. The loss of key species or functional groups from any vegetation is likely to compromise ecosystem processes and so limit the ability to supply essential ecosystem services. For vegetation like sand dunes, these losses may be particularly profound. In Florida for

example, Miller (2015) identified reduced cover of the dune building grass, *Uniola* paniculata, in low elevation areas subject to frequent flooding as a likely reason why dune erosion was more common in these sites. The interplay of ACC-linked changes in storm frequency and severity, with resulting shifts in plant community composition and thus resilience against further storm damage, is pivotal for understanding how ECEs contribute to coastal defence.

Inter-tidal Plant Communities

Communities subject to periodic, but predictable, (twice daily) tidal submersion and exposure to air – mangroves, saltmarshes and some algal communities.

Although mangrove forests are both a globally widespread and exceptionally important habitat for biodiversity and coastal defense provision in (sub)tropical regions, we focus here on the saltmarsh ecosystems more typically associated with temperate coastlines. This is simply because in this special issue, **Krauss and Ostler (2020)** provide a comprehensive review of how storms influence mangrove ecosystems and the vital ecosystem services they provide.

The physical damage caused by storms ranges from waves and strong currents dislodging or breaking above-ground tissue (Möller *et al.*, 2014), to complete denudation of vegetation (Morton and Barras, 2011). Fragmented or degraded marshes are generally more vulnerable to disturbance than intact habitat (Stagg *et al.*, 2020) and so are less resilient to extreme events. Responses also vary with vegetation height and stiffness (Vuik *et al.*, 2018). For example, when exposed to simulated storm conditions, the tall, rigid grass *Elymus athericus*

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

experienced more breakage than the shorter, more flexible *Puccinellia maritima* (Rupprecht et al., 2017). Strong winds and water flows can tear the root mat from the marsh surface, laterally folding it into ridges – described by Cahoon (2006) as like 'pushing a rug up along a wooden floor'. This alters marsh topography, lowering areas where turf was lost and raising elevations (up to 2 m) on the folded ridges (Guntenspergen et al., 1995). This can affect long-term community recovery (Leonardi et al., 2018; Mossman et al., 2019). In addition to direct damage, storms modify plant communities through changes to the physical environment (see reviews by Cahoon, 2006; Leonardi et al., 2018). Storm-driven waves can cause lateral erosion of tidal flats and marshes (Callaghan et al., 2010), with erosion of fronting tidal flats increasing marsh loss by amplifying the consistent pressure imposed by normal wind and wave action (Leonardi et al., 2016). Saltmarshes are resistant to storm-driven erosion of the marsh surface however, with vegetation playing a key role in stabilizing the sediment (Spencer et al., 2016). Importantly, significant amounts of sediment (mobilised from sub-tidal, intertidal or upstream areas) are deposited on saltmarshes during these events (de Groot et al., 2011). For example, a single hurricane can deposit the equivalent of over a century of sediment accumulated in 'normal' conditions, and account for up to two thirds of long-term sedimentation (Williams and Flanagan, 2009). Burial under such rapid deposition can kill vegetation (Callaway and Zedler, 2004), and reduce growth and seedling establishment (Langlois et al., 2001; Cao et al., 2018). Marsh recovery following storm-driven sediment deposition can be rapid however, (Guntenspergen et al., 1995) and increases in elevation improve colonization, particularly in subsiding marshes (Mendelssohn and Kuhn, 2003).

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

Storms can generate significant debris, either through breakage of local coastal vegetation or the remobilization of existing natural and artificial debris (Meixler, 2017). Like sediment, debris can kill or damage the vegetation beneath (Uhrin and Schellinger, 2011), modify environmental conditions such as sediment redox potential (Abbas et al., 2014), and lead to reductions in species richness (Tate and Battaglia, 2013). The amount of damage depends on the type of debris deposited (Uhrin and Schellinger, 2011), the size of the mat and how long it persists (Valiela and Rietsma, 1995), so in some circumstances, recovery can be quick (Ehl et al., 2017). Plant debris can also be important for propagule dispersal, but can act as a pathway for invasive species (Minchinton, 2006). The impact of changes in soil salinity following storms is less clear. In some circumstances, high rainfall can ameliorate conditions, allowing plants to colonize or grow faster. For example, in the dry climate of California, Noe and Zedler (2001) found that heavy rainfall provided a window for germination by reducing soil salinity and increasing soil moisture. Storms can also alter the inundation regime of tidal marshes through changes to coastal morphology that lead to closure of an estuary mouth or movements of tidal channels. Zedler (2010) summarises how the storm-driven closure of the Tijuana estuary had substantial negative impacts on tidal marsh vegetation when subsequent drought caused moisture loss and hypersalinity in sediments. More typical is the generally negative effect of seawater inundation; Janousek et al., (2016) report how experimental increases in inundation over one growing season reduced plant productivity. It is also likely that even where tidal marsh plants survive storm disturbance, they are so ecophysiologically compromised that interactions with other species change.

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

The study by Edge et al., (2020) on three European saltmarsh species is an excellent example. Following seawater immersion, the biomass of Triglochin maritima decreased markedly in mixed assemblages with *Plantago maritima* and *Aster tripolium*, compared to monoculture. Interestingly, *Plantago* performed markedly better in flooded, mixed assemblages than in monoculture, appearing to 'take advantage' of a relative decline in the growth of the other species (Hanley et al., (2017) describe very similar shifts for supralittoral plants). Edge et al., (2020) further note how that for 14 out of 18 trait-species combinations examined (including height, SLA, and leaf number), flooding response in mixed assemblages differed from monocultures, changing the direction, as well as magnitude, of flood effects. Plant trait and species composition shifts within saltmarsh communities are likely important to ecosystem stability and function (Ford et al., 2016), but if disturbance associated with storm events facilitates the spread of non-native species, repercussions could be more severe. This is exactly what Gallego-Tévar et al., (2020) report when they found that an invasive Spartina hybrid was better able to tolerate stressful post-flood salinity conditions than its parent species (see also Charbonneau et al., 2017). Together, these studies underscore the importance of species identity in dictating community responses to storm disturbances, and thus the capacity of the saltmarsh ecosystem to continue to deliver key services as ACC continues.

Subtidal Plant Communities

Ecosystems continually submerged below sea-level – primarily seagrass beds, but includes marine macro-algal communities, most commonly kelp 'forests'

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

Storm events can have substantial impacts on seagrass and macroalgal communities, from changes in the relative abundance of species within a community to total habitat loss. These impacts occur through physical disturbance from violent storms, burial by displaced sediment, and even subsequent 'knock-on' effects from pluvial flooding. High wave energy and flow speeds can physically damage fronds and stipes (Denny et al., 1989), uproot individuals (Preen et al., 1995) or cause failure of holdfasts (Seymour et al., 1989). While the biomechanics of storm effects are well understood (see Denny and Gaylord, 2002), predicting the impact of storm events is more complex. Structural damage and uprooting/dislodgement can result in high mortality; for example, complete loss of giant kelp occurs in storm-intense years but is not seen everywhere (Edwards, 2004). Large, frequent and breaking waves exert the greatest forces and are most likely to result in structural damage or dislodgement, particularly in shallow water when a storm coincides with low tide (Preen et al., 1995; Filbee-Dexter and Scheibling, 2012). Even moderate waves can lead to entanglement of kelp fronds, increasing the potential for tissue damage (Seymour et al., 1989). Effects can vary according to substrate type, as wave-carried rocks can dislodge individuals, while sand grains and small pebbles scour roots and holdfasts or damage tissue (Shanks and Wright, 1986). Substrate type also affects the forces needed to dislodge macroaglae (Thomsen et al., 2004). Storm-driven waves do not affect every organism equally however. Vulnerability varies with spatial arrangement and age; individuals in the centre of algal stands are less likely to be removed by waves or strong currents, and small, young kelp are more easily dislodged than older, larger individuals (Thomsen et al., 2004). Nonetheless, the higher biomass of

380 very large kelp makes them more susceptible to high wave energies (Seymour et al., 1989). 381 Consequently, severe storms can result in homogenization of age structure in kelp beds. 382 Ecotypes or morphological plasticity provide resistance to high wave action (e.g. in shallow 383 waters) (Fowler-Walker et al., 2006), allowing some individuals or populations to better 384 cope with an extreme event. Storms are also generally most frequent at the point in the 385 annual cycle where organisms are most resistant (Burnett and Koehl, 2019); accordingly, 386 changes to storm seasonality may have significant consequences for these communities. 387 In addition to the effects of wave action and shear stress, storm-generated waves and currents redistribute sediments, causing erosion in some areas and burial in others. Cabaco 388 389 et al., (2008) identified significant species-specific variation in seagrass tolerance to both 390 burial with sediment and erosion. Recovery is generally rapid under shallow burial, but this capacity decreases markedly when more sediment is deposited (Fourgurean and Rutten, 391 392 2004; Gera et al., 2014). Consequently, burial by up to 45 cm of sediment, reported 393 following some severe storms (Kosciuch et al., 2018; Browning et al., 2019), is likely to 394 lead to localized loss of communities. As well as the impacts of storms at sea, heavy rainfall can have major impacts on sub-tidal 395 396 ECEs via the discharge of nutrient-rich, sediment-laden freshwaters into coastal areas. 397 These enriched waters cause turbidity and stimulate algal blooms and epiphytic growth, 398 both of which lower light availability (Lapointe et al., 2019). Seagrasses are especially vulnerable (Cobaco et al., 2008), and impacts of flood-induced light limitation can be more 399 severe than the physical impacts of storms (Carlson et al., 2010). In addition, heavy rainfall 400 can reduce salinity, particularly in lagoons or estuaries, sometimes for several months 401

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

(Herbeck et al., 2011; Kowalski et al., 2018,). Some seagrasses are intolerant of hyposaline conditions, leading to mortality and sub-lethal effects (Fernandez-Torquemada and Sanchez-Lizaso, 2011). Ridler et al., (2006) observed that while thinning and leaf loss occurred immediately after hurricanes, further declines continued for many months likely due to low and fluctuating salinity. Tolerance to hyposalinity is however, variable between and within species, ecotype (Benjamin et al., 1999) and season (Fernandez-Torquemada and Sanchez-Lizaso, 2011) reducing the predictability of how seagrass communities respond. Storms are nonetheless important disturbance agents, and seagrasses can rapidly regrow from roots or rhizomes, despite substantial above-ground loss (Valiela et al., 1998). Other macroalage can reattach or regenerate when broken or dislodged (Thomsen and Wernberg, 2005). Furthermore, storms may actually facilitate medium and long distance dispersal of seagrass and macroalgae propagules (Bell et al., 2008; Waters et al., 2018) and be important in maintaining food web complexity, although increasing storm frequencies can challenge the ability of kelps to regrow and simplify food web structure (Byrnes et al., 2011). Damage to kelp fronds can for example, stimulate grazing activity, so increasing potential tissue loss to an already stressed individual (O'Brien et al., 2015). Reductions in canopy-forming macroalgae and seagrasses through a combination of direct storm damage and herbivory can lead to community shifts to opportunistic species, such as turf-forming algae (O'Brien et al., 2015, Filbee-Dexter and Wernberg, 2018). Gaps resulting from the storm-driven loss of corals and other benthic animals can nevertheless facilitate macroalgal

colonization, particularly in the absence or reduction of herbivory (Edmunds, 2019; 423 424 Steneck et al., 2019). 425 The impacts of extreme storm events are not experienced in isolation. Long-term environmental changes, such as SLR, eutrophication and overfishing, influence community 426 427 susceptibility, as does the legacy of previous storms (i.e. position in the 'storm recovery 428 cycle'). For example, substantial seagrass losses in North Queensland, Australia, were the 429 cumulative result of a succession of intense storm and flood years, urbanization, and agricultural run-off, rather than the consequence of a single storm (McKenna et al., 2015). 430 Storm events are also stressing systems already impacted by ACC, a combination that 431 432 could lead to higher losses than imposed by either driver in isolation (Babcock et al., 2019). 433 Smale and Vance, (2016) for example report that while the cold-water kelp *Laminaria* hyperborea was relatively resistant to storms, mixed stands containing warm water species, 434 435 such as L. ochrolueca, were more vulnerable. Consequently, observed and projected shifts in kelp community composition due to increasing temperatures (Pessarrodona et al., 2018) 436 437 could lead to greater kelp community vulnerability. Collectively, the processes described above underpin observations of highly variable storm 438 impact on sub-tidal plant communities (Edwards, 2004; Filbee-Dexter and Scheibling, 439 440 2012). Long term studies can help identify the relative impacts of storms and anthropogenic 441 factors (Cuvillier et al., 2017), but our understanding of storms on subtidal ECEs is limited by few long term studies outside of coral reefs (Duffy et al., 2019). While there are many 442 estimates of the impacts of single storms, it is rarely possible to put the patch-scale losses in 443 the context of the dynamics of the system. Despite advances with remote-sensing 444

446

447

techniques, the depth and turbidity of these systems mean that ground based observation will continue to be essential.

PLANT COMMUNITIES AND COASTAL DEFENCE

In addition to biodiversity loss, recent concern about the various threats to ECEs stems 448 449 from their role in protecting agricultural land and urban communities from storm damage. 450 Consequently, there is increasing focus on quantifying and valuing benefits associated with the ecosystem services provided by ECEs (Barbier et al. 2011, 2015; Temmerman et al., 451 2013; Morris et al., 2018). Although the methods used to generate accurate, global, 452 453 economic estimates remain in their infancy (Barbier 2016), Costanza et al., (2014) 454 estimated that for tidal marshes alone, the provision of nursery grounds for commercial 455 fisheries, carbon storage, recreation and flood protection provided US\$24.8 trillion to the 456 global economy. 457 ECEs provide storm protection principally through the stabilization of substrates, and 458 therefore the prevention of erosion, and attenuation of wave energy, and thus flood risk (Barbier 2015). Unlike hard (engineered) defences they are also dynamic; indeed the IPCC 459 (2019) recognized how saltmarshes and mangroves can keep pace with fast rates of SLR (> 460 10mm yr⁻¹), depending on local variation in wave exposure, tidal range, sediment 461 dynamics, and coastal land-use. Moreover, it is even possible that the extent of coastal 462 wetlands (saltmarsh, freshwater marsh and mangrove) could increase by up to 60% because 463 of SLR (Schuerch et al., 2018). With appropriate management, supra-littoral sand dunes are 464 also capable of adapting to shifts in sea levels and storm frequencies (Hanley et al., 2014). 465

The growing evidence that ECEs reduce storm damage underpins their recognition as nature-based flood protection (Temmerman *et al.*, 2013; Narayan *et al.*, 2016; Van Coppenolle & Temmerman, 2019). The traditional approach to coastal defence has been to counter flood risk with 'hard' engineering, but measures like seawalls are expensive (up to £5,000 per m [Hudson *et al.*, 2015]), inflexible, and often deliver unexpected environmental outcomes (Firth *et al.*, 2014). Vegetated shorelines by contrast, are a natural defence and offer adaptability, flexibility and cost-effectiveness (e.g. £20 per m for dune stabilization (Hudson *et al.*, 2015)), with the additional benefit of the other ecosystem services they provide (Costanza *et al.*, 2014; Barbier 2015).

Protective role played by different ECEs

The protective value differs not only between ECEs, but also with regional and local geographical context. The principal defensive role played by dunes for example, stems from being a physical barrier to marine flooding, but their importance in this regard depends on local coastal geomorphology (e.g. sediment supply, land relief) and on the use and asset value of the land they protect (Hanley *et al.*, 2014). Dune vegetation stabilises substrates and reduces wave-driven erosion, with plant shoots reducing wave swash and roots increasing mechanical strength of the sediment (Feagin *et al.*, 2019), but even the identity of component species can be important. **de Battisti and Griffin (2020)** for example examined how three common European foredune species (*Ammophila arenaria*, *Cakile maritima*, and *Salsola kali*) varied in their ability to withstand simulated wave swash. Although *Ammophilla* was by far the most robust, by virtue of the protection provided by their roots, rhizomes and below ground shoots, all three species had a

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

remarkable capacity to tolerate wave action, underscoring how different plant species can contribute to sand dune stability. (See also Charbonneau et al., (2017) who report how North American dunes stabilized by the invasive Carex kobomugi were less affected by storm damage than those colonized by native Ammophila breviligulata). Nonetheless, de Battisti and Griffin (2020) also show that despite an exceptionally well-developed belowground shoot system, Ammophila resistance varies depending on sand particle size; the coarser sediments associated with restored habitats increasing erosion potential compared to finer sediment of natural regeneration sites. This finding is important since it underscores why elucidation of biological and environmental factors is crucial to the integration of natural habitats like sand dunes into coastal protection schemes. For other supra-littoral habitats however, we understand little about their putative role in coastal defence. Nonetheless, there is little doubt that coastal forests and freshwater wetlands provide other vital ecosystem services like carbon sequestration and storage (see Stagg et al., 2020; Ury et al., 2020). The ability to track SLR (Kirwan et al., 2016; IPCC, 2019) along with their well-known capacity for wave attenuation (Möller et al., 2014; Rupprecht et al., 2017), has put saltmarshes at the centre of current interest in 'nature-based' coastal defence solutions. How effective wave attenuation is, depends strongly on topography (even to the extent of friction imposed by the biogeomorphic landscape created by the plants) and (ontogenetic, seasonal or species-specific) plant traits like shoot stiffness and density (Bouma et al., 2010, 2014; Möller et al., 2014). As a result, studies such as **Zhu** et al. (2020), describing variation in stem flexibility and breakability for a variety of European saltmarsh species,

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

are vital to understanding how communities will respond to increased storminess. Plant response can vary with wave conditions however. Shao et al. (2020) exposed Spartina alterniflora to different wave environments for 8 weeks and showed that key physiological and biochemical plant parameters varied accordingly; i.e. higher and more frequent waves imposed more stress. Nonetheless, wave-exposed plants tended to allocate more biomass to their roots, a response that may facilitate anchorage against wave impact. These biomechanical and morphological properties are likely to vary with plant age. Cao et al., (2020) for instance describe how after seven weeks of simulated wave exposure, seedling survival and growth declined for all three common marshland species examined (Spartina anglica, Scirpus maritimus and Phragmites australis). Taken together these studies increase our understanding and prediction of spatio-temporal variation in saltmarsh community response to wave exposure, an essential pre-requisite in the design and implementation of nature-based flood protection. In addition to species identity, age and seasonality, other marsh-specific characteristics are important determinants of wave attenuation. One of the key attributes is habitat size (Shepard et al., 2011). Indeed, in a recent analysis of the long-term marsh persistence around the UK, Ladd et al., (2019), revealed that marsh width was positively associated with higher sediment supply, although they noted also that current global declines in sediment flux are likely to diminish saltmarsh resilience to SLR. Although challenging, understanding the shifting dynamics of these regional-scale coastal processes is crucial to our ability to integrate marshes into coastal defence schemes (Bouma et al., 2014, 2016). Not only is that because we need to know where and how ECEs fit into an integrated

coastal management approach, but long-term salt marsh persistence depends on continual 532 533 recruitment of new plants. 534 For saltmarshes, propagule establishment often occurs on leading edges when sediment 535 accretes on the adjacent 'tidal flat' (Bouma et al., 2016). Even an apparently minor change 536 in sediment levels may be sufficient to facilitate seedling establishment; an effect 537 demonstrated by Fivash et al., (2020) in their mesocosm experiment with the pioneer 538 Salicornia procumbens. They show that elevation of sediment micro-topography by just 2 539 cm was the overwhelming driver of seedling growth (i.e. an average 25 % increase). They ascribed this response primarily to the effects of the 'tidally driven oxygen pump', i.e. 540 541 increased emersion time allows more aeration of the raised sediment (see also Mossman et 542 al., 2019). Once pioneers like Salicornia have established, the environment they create (wave attenuation, sediment trapping and enhanced drainage) facilitates subsequent 543 544 colonisation by later successional species and so the marsh can expand seaward 545 (Temmerman et al., 2007). Storms also have the potential to increase the landward marsh 546 area if the habitat can retreat and displace terrestrial habitats. In these circumstances, 547 Kotter and Gedan (2020) demonstrate that saltmarsh is pre-primed to take advantage of 548 this opportunity, reporting how seeds of halophytic species can disperse up to 15 m into northeast American coastal pine forest. They argue that although saltwater intrusion will 549 550 limit forest regeneration, the soil seed bank can thus support continued landward migration of saltmarsh species. 551 Much of the recent interest in mangroves stems from their perceived mitigation of the 2004 552 Indian Ocean Tsunami on coastal settlements. While their actual contribution remains 553

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

questionable (Barbier 2015), nonetheless, a number of studies report that mangroves can lower wave heights and reduce water levels during storm surges (Das and Vincent, 2009; Armitage et al., 2019) and that their removal leads to increased coastal erosion and damage (Granek and Ruttenberg 2007; Barbier 2015). Like saltmarsh therefore, mangroves are at the forefront of contemporary research into how ECEs help defend our coastlines (see Krauss and Osland, 2020). It is also noteworthy, that Alongi (2008) highlights how much mangroves offer protection against extreme events is strongly linked to intrinsic habitat characteristics (these include forest location and width, tree density and size, soil texture), but also the presence of other ECEs, such as coral reefs, seagrass beds, and dunes. The case for a substantial protective role of sub-tidal ECEs remains less clear (although coral reefs are well studied and widely believed to play a major role – see Barbier 2015). It is known however, that seagrasses attenuate wave energy (Christianen et al., 2013; Reidenbach and Thomas, 2018), and thus likely offer some coastal defence (Barbier et al., 2011; Ondiviela et al., 2014). Furthermore, the reduction in wave energy seagrasses provide can reduce the erosion experienced by adjacent tidal marsh systems (Carr et al., 2018) and stabilise or even facilitate beach expansion (James et al., 2019). Consequently, the dramatic global decline of seagrass habitat is of great concern and underscores recent calls for wider habitat protection (Cullen-Unsworth and Unsworth 2018). It is less clear whether sub-tidal macroalgal communities play any role in wave attenuation and therefore coastal protection, but a full review is provided in this special issue (see Morris et al., **2020**). In short, Morris et al., (2020) note how only a limited number of studies have investigated coastal protection, and in their own study in Australia found that wave

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

attenuation by the kelp *Ecklonia radiata* was restricted to a small subset of the environmental conditions sampled.

Using ECEs in integrated coastal defence

The implementation of 'soft' or natural flood defences depends on landscape context (including the economic value of the land threatened by SLR, erosion, and storm damage) and whether it is actually feasible and cost-effective to maintain or move defences (Hoggart et al., 2014). The 'hold the line' option has been traditionally met by the construction of 'hard' defences (engineered solutions utilising concrete walls, rocky breakwaters, steel piling, or stone gabions) but these are extremely expensive and have limited ecological value. There is nonetheless considerable interest in how we might 'soften' structures using design alterations (e.g. modification of surface topography) to increase biodiversity value (Firth et al., 2014). It is also recognised that vegetated foreshores reduce wave impact on sea walls, such that a fronting saltmarsh provides sufficient additional defence to allow sea wall height to be lowered, with substantial savings to capital and maintenance costs (Vuik et al., 2016). Where natural habitat is absent, it may be possible to create it using management actions to stabilize or accrete sediment. For example, the combination of beach nourishment, sand traps and planting can establish sand dunes to provide storm protection to landward hard defences (Feagin et al., 2015). At the landscape scale, the strategic integration of hard engineered and soft natural defences may provide the only realistic, cost-effective way to protect large sections of coastline.

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

It is imperative however, to ensure that where integrated management is planned, an engineered intervention does not detrimentally affect nearby ECEs. For example, hard defences can disrupt natural coastal processes and sediment supply (Hanley et al., 2014), while the problem of 'coastal squeeze' means that existing (or planned) ECEs fronting hard-engineered defences cannot always track SLR (Schuerch et al., 2018). In these situations, the long-term sustainability of natural flood protection may be greater if there is the potential to move the line of defence landward. This can simply involve ensuring a capacity for an existing ECE to 'roll back' (see Kotter and Gedan, 2020), but increasingly, ECEs are created in former terrestrial habitats; a process often termed 'managed retreat' or 'managed realignment' (MR). The most common example is the breaching of sea walls or dykes to allow tidal flooding with the expectation that newly inundated land will develop into saltmarsh. These schemes have met with mixed success however, many studies showing that the plant communities developing in MR sites differ from those in adjacent natural marshes (Mossman et al., 2012; Masselink et al., 2017). Environmental conditions, such as elevation in the tidal frame or geomorphic setting (Mossman et al., 2012; Masselink et al., 2017) are critical to successful restoration, but these alone are insufficient to explain all observed differences (Sullivan et al., 2018). Propagule dispersal is often limited and limiting (Mossman et al., 2012) and species-specific differences in dispersal ability could mean that early colonisers inhibit the establishment of later arriving species (Sullivan et al., 2018). Planting species with low recruitment potential into newly established marshes could resolve this (Mossman et al., 2019). A relative lack of topographic heterogeneity in MR sites may also limit

transition to saltmarsh (Masselink *et al.*, 2017; Lawrence *et al.*, 2018). As we have seen (Mossman *et al.*, 2019; Fivash *et al.*, 2020), even minor changes in surface elevation can have a substantial impact on seedling recruitment in saltmarsh. These studies highlight that, while MR often fails to deliver 'natural' saltmarshes, there is considerable potential for research-led management to improve restoration success.

SYNTHESIS AND FUTURE STUDIES

Although considerable research effort is focused on the response of ECEs to disturbance events, there remains both a geographical bias towards the US Gulf and Atlantic seaboard states, and limited understanding of how the multiple stressors associated with SLR, extreme storms, and other anthropogenic activities affect even a fraction of ECE species or habitats. Beyond a simplistic call for 'more research with additional species and regions', we discuss how illumination of plant species and community responses to flooding, sediment movement, mechanical damage and landscape-scale processes is needed to better inform our ability to manage the biodiversity of ECEs and ensure their continued contribution to coastal defence (Fig 1).

Research Priority I – $\it Effects$ of storm damage and flooding on plant reproductive

performance and recruitment

Parmesan and Hanley (2015) highlighted how despite a wealth of information detailing plant species and community response to the warming, drought and elevated atmospheric CO₂ (eCO₂)associated with ACC, remarkably little is known about how any of these factors influence plant regeneration biology. The same failing is true of ECE response to SLR and

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

storms, even though recruitment success is manifestly pivotal to understanding how environmental stress and perturbation influence plant community recovery. Indeed, it is at this point worth stressing that the disturbance associated with storms is an important, positive, factor in ECE dynamics. It is for example, well understood that tropical cyclones stimulate reproduction and open regeneration opportunities (Zimmerman et al., 2018; Krauss and Osland 2020), while disturbance of sand dune vegetation is a key driver of plant biodiversity in these most dynamic of ecosystems (Green and Miller, 2019). What is less clear however, is how ACC-linked shifts in storm intensity and return times disrupt recruitment processes that have evolved in response to environmental dynamics typical of pre-industrial times (Hanley et al., 2014; Imbert 2018). Some experiments have focused on the effect of elevated salinity on flowering and reproduction, but all too often consider only long-term, chronic effects (e.g. Van Zandt and Mopper, 2002; Pathikonda et al., 2010; Rajaniemi and Barrett, 2018). Nonetheless, these studies are important as they show; (a) responses may only become apparent long after exposure (Van Zandt and Mopper, 2002), (b) reduced sexual reproduction was not compensated by vegetative reproduction (Pathikonda et al., 2010), and (c) germination potential is species-specific (Rajaniemi and Barrett, 2018). Many fewer authors report the impact of acute seawater flooding on the reproductive potential of coastal plants, but those that do evidence reduced flowering (White et al., 2014; Hanley et al., 2020a), and reproductive output (Hanley et al., 2020b). A critical element of the latter study was that the growth of seedlings cultivated from parent plants subject to acute seawater immersion declined; i.e. while the parent plant might survive long enough to reproduce, longer-term

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

regeneration potential is compromised. The importance of changes in wave action on the dynamic sediment environment in saltmarsh regeneration may be better understood (Boauma *et al.*, 2016; Cao *et al.*, 2018), but there is a need to elucidate the effects of all manifestations of storm damage and flooding on plant reproductive and recruitment potential, including storm-driven dispersal.

Research Priority II –Coastal plant responses to multiple-stressors associated with SLR and storm damage

Teasing apart the interactive effects of saltwater flooding, mechanical damage, litter accumulation, and sediment shift on the plant community is challenging, a problem made all the more difficult simply because so few studies (outside the SE USA at least) have systematically examined how these different factors affect and shape plant community responses in isolation, let alone combination. Using remote imaging, Hauser et al., (2015) report how saline inundation following Hurricane Sandy caused widespread wetland degradation in New Jersey, first by marsh dieback, and as a consequence, subsequent sediment erosion and retreat of the marsh inland. They also note the importance of plant community composition in this interaction; woody plants being more tolerant than herbaceous vegetation. Using an experimental approach, Tate and Battaglia (2013) considered the combined effects of seawater flooding and litter deposition. The application of locally sourced litter (degraded stems of black needlerush - Juncus roemerianus) to four plant communities along a Floridian estuarine gradient (brackish marsh, freshwater marsh, wetland forest, and pine savanna) had a profound negative effect on plant survival and species richness in all communities. In tandem with controlled seawater flooding however,

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

litter had a major impact on species composition in pine savannah, as salt-tolerant species capable of vegetative regrowth through dense detritus were the only species to persist. Tate and Battaglia (2013) also noted how vegetation in habitats with higher ambient sediment salinity was more resilient to the combined effects of flooding and litter deposition. These studies (see also Imbert, 2018; Kendrick et al., 2019) signpost the importance of interactive factors on the recovery of ECEs following storm and other ACC-linked disturbance events. Given the logistical issues associated with simultaneous replication or observation of multiple-stressors, it is unreasonable to expect a flurry of research focused on the interactive impacts of various storm disturbances on ECEs. Moreover, one could also argue that a true picture of coastal plant response needs also to consider eCO₂ and shifts in temperature and precipitation (Parmesan and Hanley, 2015). Indeed, Huang et al., (2018) argued that an increase in night-time temperatures had facilitated the expansion of the shrub Morella cerifera into Virginian coastal grasslands with likely concomitant impacts on erosion regimes. Although by definition, unpicking the simultaneous interplay of several ACC-linked stressors is complex, as a first step studies could examine the responses of the same species to different stressors in isolation, and elucidate how at least two factors conspire to affect plant performance. Research Priority III – Plant community interactions and post-disturbance recovery Although it is well known that environmental perturbations (e.g. fire, herbivory, etc.),

mediate plant community interactions, beyond a reasonable understanding of the role of

tropical cyclones in forest dynamics (Hogan et al., 2016; but see Pruitt et al., 2019), the

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

impact of storms and SLR on plant-plant, plant-animal, and plant-microbial interactions in ECEs is poorly resolved. We have discussed already how species-specific variation in plant response to storms might act as a selective filter, removing susceptible species from the recovering plant community. This is why field and multi-species (microcosm) greenhouse experiments are invaluable; as shown by Hanley et al., (2017) and Edge et al., (2020), it is by no means certain that plant species responses in monoculture are replicated in mixed assemblages. Nonetheless, these kinds of study are rare and yet required to disentangle how plant-plant interactions vary in response to a variety of storm-related impacts. It is also worth stressing, that community interactions go beyond shifts in plant competitive hierarchies. For example, although Camprubi et al., (2012) report how three of six Mediterranean sand dune species suffered complete mortality within a week of exposure to seawater, the remainder had delayed or greatly reduced mortality when grown in association with the mycorrhizal fungi, Glomus intradices. Symbiotic mycorrhizal fungi are well known for their importance to plant health and vigour (Smith and Read, 2008), but in coastal vegetation like sand dunes, the association may be essential for survival (Koske et al., 2004). Unfortunately, the vast majority of work on how the plant-mycorrhizal association affects plant response to salinity comes from agricultural systems (Evelin et al., 2019) and consequently we know little about how microbial symbionts respond to stormlinked disturbances in ECEs, or how they moderate plant responses in the post-event community. Seawater inundation is also likely to have major effects on the soil physico-chemical environment upon which all organisms depend. A detailed assessment of soil structure and

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

chemistry is beyond the scope of this review, but in addition to reduced aeration, increasing ionic concentrations and exchange capacity likely affect the bioavailability of key mineral nutrients (Kadiri et al., 2012). Saline flooding will affect also soil microbial and invertebrate communities, and consequently, the decomposition and nutrient-cycling services they provide (Sjøgaard et al., 2018; Stagg et al., 2018). Remarkably few studies however, consider the impact of acute flooding on soil biogeochemistry, nor how additional stresses like sediment movement and litter accumulation affect soil dwelling animal and microbial communities and the processes they deliver. Aboveground interactions are no less important. In an elegant experiment where sods of Louisianan marshland vegetation were exposed over 2-years to saline flood treatments, with and without herbivory, Gough and Grace (1999) reported that species loss was fastest in seawater treatments when mammal herbivores were also present. Although the flooding treatment was designed to mimic SLR rather than acute flooding, this study nonetheless emphasises how, even if species can tolerate one stress (flooding), the imposition of a second (herbivory) may filter species from the ecosystem (see also Mopper et al., 2004; Schile and Mopper, 2006). Taken together, these studies underscore how post-storm conditions can affect plant morphology and the expression of defence metabolites, change herbivore performance and selection preferences, and how in combination, some plants may be excluded from the post-disturbance community. We cannot hope to understand how extreme storm events influence ECEs without a much greater understanding of these interactions.

747 Research Priority IV – Better prediction of where and how storm events and SLR impact 748 ECEs and the delivery of essential ecosystem services. 749 Although we know that storms are more likely to happen with more frequency and greater 750 intensity, a major challenge in predicting and understanding how ECEs will respond is to 751 be able to forecast and define the range of storm surge and SLR scenarios for any given 752 location. To achieve this, plant biologists must collaborate with geomorphologists, who 753 with their understanding of bathymetry, wave dynamics, sediment supply, landform, and 754 the biomechanical properties of vegetation, can offer vital insight into which ECEs are most susceptible and how they are likely to be affected (see also Krauss and Ostler, 2020). It also 755 756 true, that in order to deliver accurate flood risk predictions and mitigation scenarios, 757 geomorphologists must consider the contribution of plant communities to coastal processes. 758 The concept and application of coastal flood risk frameworks (CRAF) in coastal 759 management is relatively well developed, but the focus has tended to be on how 760 vulnerability to flooding affects human society rather than ECEs (Hallegatte et al., 2013; 761 Reimann et al., 2018; Viavattene et al., 2018). Nonetheless, there is developing 762 appreciation that CRAF can be used to identify 'at risk' ecosystems (especially those that 763 offer some measure of flood protection), or parts of the coastline where flood risk might be 764 mitigated by virtue of the protection afforded by natural vegetation. In one such example, 765 Christie et al. (2018) use the CRAF approach to pinpoint 'hot spot' sections of the North Norfolk (England) coast at greatest flood risk, and identify likely direct and indirect 766 impacts based on an understanding of local geomorphology and hydrodynamic forcing 767 768 during floods. Of particular note in this study is the finding that flood impact could be

reduced by saltmarsh; i.e. CRAF allows us to identify one of the key ecosystem services 769 770 provided by coastal vegetation (see also Torresan et al., 2012). 771 Another modelling approach, more familiar to plant biologists and ecologists, are species 772 distribution models (SDMs). These have been widely used to predict how the geographical 773 distribution of plant populations will respond to ACC-linked changes in precipitation and temperature (see Mairal et al., 2018; Rodríguez-Rodríguez et al., 2019). As noted already 774 775 however, the combination of SLR with additional climate-change drivers is a unique, but 776 largely ignored, issue for ECEs. Nonetheless, Garner et al. (2015) attempt some comparative synthesis, using SDM for Californian coastal plant species. They predict that 777 778 by the end of this century, SLR alone threatens 60 of the 88 species considered and that 10 779 could completely lose their existing habitat range (due to flooding and erosion) within the (24,000km²) study region. This compares with only four species where shifts in 780 781 temperature and precipitation alone eliminate all currently suitable habitats. Indeed, unlike 782 plants threatened by SLR, some species may even gain suitable habitat space under likely temperature and precipitation scenarios. Garner et al. (2015) stress however, that in order to 783 784 develop robust predictive models for coastal species, a much better mechanistic 785 understanding of vegetation responses to SLR, flooding and climate scenarios is needed. 786 One way to achieve that aim is by undertaking long-term monitoring of threatened ECEs. 787 This allows us to 'ground truth' predictive models by 'back casting' how recent environmental changes have actually influenced plant communities. By virtue of access to 788 the Carolina Vegetation Survey, Ury et al., (2020) were able to monitor changes in coastal 789 790 forest communities over the past two decades. They report how the growth of tree species

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

like Acer rubrum, Juniperus virginiana, Pinus serotina, Taxodium distichum and various Quercus species was considerably reduced in low elevation sites where high soil salt content evidenced recent increased seawater seepage. In so doing, it is then possible to track how chronic saltwater intrusion has influenced tree growth and shifts in community composition over a 7-13 year time scale, exactly the kind of data needed to validate predictive models and understand how vulnerable ECEs respond to SLR, and changing storm frequencies and intensities. Long-term ecological surveys are time consuming and labour intensive, and for large coastlines therefore, impractical over the decadal timeframes in which we expect significant geomorphological and ecological changes to occur. Nonetheless, the use of remote sensing techniques in combination with localised 'groundtruthing' (see Stagg et al., 2020) offers an effective combination to monitor and predict coastal change. The fact that both Stagg et al., (2020) and Ury et al. (2020) highlight how the ability of coastal forests to deliver key ecosystem services is likely compromised by seawater inundation presents the most compelling reason to undertake long-term monitoring and predictive modelling studies into the future.

Conclusions - ECEs in Perspective

The threats posed by the myriad factors associated with ACC and changing storm patterns are worthy of considerable attention, not only from the many geomorphologists, environmental agencies and land managers already concerned with coastal defence, but also from biologists with any interest in plant ecophysiology or community ecology. Beyond any esoteric concern, as sea levels rise and the risk and impact of extreme storms increases, the associated economic repercussions will escalate. Hallegatte *et al.*, (2013) for example,

estimated that the costs associated with flooding for the 136 largest coastal cities would increase from US\$6 billion in 2005, to US\$52 billion in 2050. Even under these extreme circumstances, it seems unlikely that taxpayers will willingly subside the high cost of protecting every vulnerable urban centre, transport link, or farm, with hard-engineered defences. Given that coastal cities and food production globally are exposed to increasing ACC-driven flood risk, nature-based risk mitigation, employing the conservation, management, or even creation of ECEs with the capacity to track SLR and mitigate storm surges seems ever more desirable. Indeed, the fact that Van Coppenolle & Temmerman (2019) suggest how a cost-effective and dynamic answer (i.e. wetland creation) to the problem of coastal defence can potentially be applied to over a third of the global land area within the influence zone of storm surges, it would seem foolish to ignore the possibility. A better understanding of the response of ECEs to seawater flooding, physical damage, litter accumulation etc., at the levels of individual plant species (ecophysiological), ecosystem (interactions), and landscape (distributions), can be delivered by plant scientists from across our various disciplines. In turn, conservation biologists and ecologists can set to work protecting and enhancing those habitats that deliver coastal defence. Only by so doing can society hope to protect the unique biodiversity of our coastal habitats and the essential ecosystem services they offer us in return.

831

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

833	Abbas A, Rubio-Casal A, de Cires A, et al. 2014. Wrack burial reduces germination and
834	establishment of the invasive cordgrass Spartina densiflora. NeoBiota, 21: 65.
835	Abbott MJ, Battaglia LL. 2015. Purple pitcher plant (Sarracenia rosea) dieback and
836	partial community disassembly following experimental storm surge in a coastal
837	pitcher plant bog. PLoS ONE 10: e0125475.
838	Adame MF, Zaldívar-Jimenez A, Teutli C, et al. 2013. Drivers of mangrove litterfall
839	within a karstic region affected by frequent hurricanes. Biotropica 45: 147-154.
840	Alongi DM. 2008. Mangrove forests: resilience, protection from tsunamis, and responses to
841	global climate change. Estuarine, Coastal and Shelf Science 76: 1-13.
842	Armitage AR, Weaver CA, Kominoski JS, Pennings SC. 2019. Resistance to hurricane
843	effects varies among vegetation types in the marsh-mangrove ecotone. Estuaries
844	and Coasts doi.org/10.1007/s12237-019-00577-3.
845	Babcock RC, Bustamante RH, Fulton EA, et al. 2019. Severe continental-scale impacts
846	of climate change are happening now: extreme climate events impact marine habitat
847	forming communities along 45% of Australia's coast. Frontiers in Marine Science
848	6 : 14.
849	Barbier EB 2015. Valuing the storm protection service of estuarine and coastal
850	ecosystems. Ecosystem Services 11: 32-38.
851	Barbier EB. 2016. The protective value of estuarine and coastal ecosystem services in a
852	wealth accounting framework. Environmental and Resource Economics 64: 37-58.
853	Barbier EB, Hacker SD, Kennedy C, et al. 2011. The value of estuarine and coastal
854	ecosystem services. Ecological Monographs 81: 169-183.
855	Barr JG, Engel V, Smith TJ, Fuentes JD. 2012. Hurricane disturbance and recovery of
856	energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida
857	Everglades. Agricultural and Forest Meteorology 153: 54–66.
858	Bell SS, Fonseca MS, Kenworthy WJ. 2008. Dynamics of a subtropical seagrass
859	landscape: links between disturbance and mobile seed banks. Landscape Ecology
860	23 : 67-74.

LITERATURE CITED

861	Benjamin KJ, Walker DI, McComb AJ, Kuo J. 1999. Structural response of marine and
862	estuarine plants of Halophila ovalis (R-Br.) Hook. f. to long-term hyposalinity.
863	Aquatic Botany 64: 1-17.
864	Bouma T, Vries MD, Herman PM. 2010. Comparing ecosystem engineering efficiency of
865	two plant species with contrasting growth strategies. Ecology 91: 2696-2704.
866	Bouma TJ, van Belzen J, Balke T, et al. 2014. Identifying knowledge gaps hampering
867	application of intertidal habitats in coastal protection: opportunities & steps to take.
868	Coastal Engineering, 87: 147–157.
869	Bouma TJ, van Belzen J, Balke T, et al 2016. Short-term mudflat dynamics drive long-
870	term cyclic salt marsh dynamics. Limnology and Oceanography 61: 2261-2275.
871	Brown JK, Zinnert JC. 2018. Mechanisms of surviving burial: Dune grass interspecific
872	differences drive resource allocation after sand deposition. Ecography 9: e02162.
873	Browning TN, Sawyer DE, Brooks GR, Larson RA, Ramos-Scharron CE, Canals-
874	Silander M. 2019. Widespread deposition in a coastal bay following three major
875	2017 hurricanes (Irma, Jose, and Maria). Scientific Reports 9: 13.
876	Burnett NP, Koehl MAR. 2019. Mechanical properties of the wave-swept kelp Egregia
877	menziesii change with season, growth rate and herbivore wounds. Journal of
878	Experimental Biology 222: doi: 10.1242/jeb.190595.
879	Byrnes JE, Reed DC, Cardinale BJ, Cavanaugh KC, Holbrook SJ, Schmitt RJ. 2011.
880	Climate-driven increases in storm frequency simplify kelp forest food webs. Global
881	Change Biology 17: 2513-2524.
882	Cabaco S, Santos R, Duarte CM. 2008. The impact of sediment burial and erosion on
883	seagrasses: A review. Estuarine Coastal and Shelf Science 79: 354-366.
884	Cahoon DR. 2006. A review of major storm impacts on coastal wetland elevations.
885	Estuaries and Coasts, 29: 889-898.
886	Callaghan DP, Bouma TJ, Klaassen P, et al., 2010. Hydrodynamic forcing on salt-marsh
887	development: Distinguishing the relative importance of waves and tidal flows.
888	Estuarine, Coastal and Shelf Science, 89: 73-88.
889	Callaway JC, Zedler JB. 2004. Restoration of urban salt marshes: Lessons from southern
890	California. Urban Ecosystems, 7: 107-124.

891	Camprubi A, Abril M, Estaun V, Calvet C. 2012. Contribution of arbuscular mycorrhizal
892	symbiosis to the survival of psammophilic plants after sea water flooding. Plant and
893	Soil 351 : 97–105.
894	Carlson PR, Yarbro LA, Kaufman KA, Mattson RA. 2010. Vulnerability and resilience
895	of seagrasses to hurricane and runoff impacts along Florida's west coast.
896	Hydrobiologia 649 : 39-53.
897	Carr J, Mariotti G, Fahgerazzi S, McGlathery K, Wiberg P. 2018. Exploring the
898	impacts of seagrass on coupled marsh-tidal flat morphodynamics. Frontiers of
899	Environmental Science 6 : 92.
900	Carter GA, Otvos EG, Anderson CP, Funderburk WR, Lucas KL. 2018. Catastrophic
901	storm impact and gradual recovery on the Mississippi-Alabama barrier islands,
902	2005-2010: Changes in vegetated and total land area, and relationships of post-
903	storm ecological communities with surface elevation. Geomorphology 321: 72-86.
904	Castañeda-Moya E, Twilley RR, Rivera-Monroy VH, et al. 2010. Sediment and nutrient
905	deposition associated with Hurricane Wilma in mangroves of the Florida Coastal
906	Everglades. Estuaries and Coasts 33: 45-58.
907	Cao H, Zhu Z, Balke T, Zhang L, Bouma TJ. 2018. Effects of sediment disturbance
908	regimes on Spartina seedling establishment: Implications for salt marsh creation and
909	restoration. Limnology and Oceanography, 63: 647-659.
910	Cao H, Zhu Z, James R, et al. 2020. Wave effects on seedling establishment of three
911	pioneer marsh species: survival, morphology and biomechanics. Annals of Botany
912	125 : doi.org/10.1093/aob/mcz136.
913	Charbonneau BR, Wootton LS, Wnek JP, Langley JA, Posner MA. 2017. A species
914	effect on storm erosion: Invasive sedge stabilized dunes more than native grass
915	during Hurricane Sandy. Journal of Applied Ecology 54: 1-10.
916	Christianen M.JA, van Belzen J, Herman PMJ, et al. 2013. Low-canopy seagrass beds
917	still provide important coastal protection services. PLoS One 8: e62413.
918	Colmer TD, Voesenek LACJ. 2009. Flooding tolerance: suites of plant traits in variable
919	environments. Functional Plant Biology 36: 665-681.

920	Costanza R, de Groot R, Sutton P, et al., 2014. Changes in global value of ecosystem
921	services. Global Environmental Change 26: 152-158.
922	Cullen-Unsworth LC, Unsworth RFK. 2018. A call for seagrass protection. Science 361:
923	446–448.
924	Cuvillier A, Villeneuve N, Cordier E, et al. 2016. Causes of seasonal and decadal
925	variability in a tropical seagrass seascape (Reunion Island, South Western Indian
926	Ocean). Estuarine, Coastal and Shelf Science 184: 90-101.
927	Das S, Vincent JR. 2009. Mangroves protected villages and reduced death toll during
928	Indian super cyclone. Proceedings of the National Academy of Sciences 106: 7357-
929	7360.
930	de Battisti D, Griffin JN. 2020. Belowground biomass of plants, with a key contribution
931	of buried shoots, increases foredune resistance to wave swash. Annals of Botany
932	125 : doi.org/10.1093/aob/mcz125
933	de Groot AV, Veeneklaas RM, Bakker JP. 2011. Sand in the salt marsh: Contribution of
934	high-energy conditions to salt-marsh accretion. Marine Geology, 282: 240-254.
935	Denny M, Brown V, Carrington E, Kraemer G, Miller A. 1989. Fracture-mechanics and
936	the survival of wave-swept macroalgae. Journal of Experimental Marine Biology
937	and Ecology 127 : 211-228.
938	Denny M, Gaylord B. 2002. The mechanics of wave-swept algae. Journal of Experimental
939	Biology 205 : 1355-1362.
940	Donguy J R, Meyers G. 1996. Seasonal variations of sea surface salinity and temperature
941	in the tropical Indian Ocean. Deep Sea Research Part I 43: 117-138.
942	Douglas SH, Bernier JC, Smith KEL. 2018. Analysis of multi-decadal wetland changes.
943	and cumulative impact of multiple storms 1984 to 2017. Wetlands Ecology and
944	Management 26 : 1121–1142.
945	Doyle TW, Smith TJ, Robblee MB. 1995. Wind damage effects of Hurricane Andrew on
946	mangrove communities along the southwest coast of Florida. Journal of Coastal
947	Research 21 : 159–168.

948	Duffy JE, Benedetti-Cecchi L, Trinanes J, et al. 2019. Toward a coordinated global
949	observing system for seagrasses and marine macroalgae. Frontiers in Marine
950	Science 6: doi: 10.3389/fmars.2019.00317.
951	Edge RS, Sullivan MJP, Pedley SM, Mossman HL. 2020. Species interactions modulate
952	the response of saltmarsh plants to flooding. Annals of Botany 125
953	doi.org/10.1093/aob/mcz120
954	Edmunds PJ. 2019. Three decades of degradation lead to diminished impacts of severe
955	hurricanes on Caribbean reefs. Ecology 100: e02587.
956	Edwards MS. 2004. Estimating scale-dependency in disturbance impacts: El Niños and
957	giant kelp forests in the northeast Pacific. Oecologia 138: 436-447.
958	Ehl KM, Raciti SM, Williams JD. 2017. Recovery of salt marsh vegetation after removal
959	of storm-deposited anthropogenic debris: Lessons from volunteer clean-up efforts in
960	Long Beach, NY. Marine Pollution Bulletin, 117: 436-447.
961	Evelin H, Devi TS, Gupta S, Kapoor R. 2019. Mitigation of salinity stress in plants by
962	arbuscular mycorrhizal symbiosis: Current understanding and new challenges
963	Frontiers in Plant Science 10: 470.
964	Feagin RA, Figlus J, Zinnert JC, et al. 2015. Going with the flow or against the grains
965	The promise of vegetation for protecting beaches, dunes, and barrier islands from
966	erosion. Frontiers in Ecology and the Environment 13: 203–210.
967	Feagin RA, Furman M, Salgado K, et al. 2019. The role of beach and sand dune
968	vegetation in mediating wave run up erosion. Estuarine, Coastal and Shelf Science
969	219 : 97–106.
970	Fernandez-Torquemada Y, Sanchez-Lizaso JL. 2011. Responses of two Mediterranean
971	seagrasses to experimental changes in salinity. Hydrobiologia 669: 21-33.
972	Filbee-Dexter K, Scheibling RE. 2012. Hurricane-mediated defoliation of kelp beds and
973	pulsed delivery of kelp detritus to offshore sedimentary habitats. Marine Ecology
974	Progress Series 455: 51-64.
975	Filbee-Dexter K, Wernberg T. 2018. Rise of turfs: a new battlefront for globally declining
976	kelp forests. Bioscience 68: 64-76.

977	Firth LC, Thompson RC, Bohn K, et al. 2014. Between a rock and a hard place:
978	environmental and engineering considerations when designing coastal defence
979	structures. Coastal Engineering 87: 122-135.
980	Fivash GS, Belzen JV, Temmink RJM, et al., 2020. Micro-topography boosts growth
981	rates in salt marsh pioneers by amplifying a tidally-driven oxygen pump:
982	implications for restoration and recruitment. Annals of Botany 125: doi:
983	10.1093/aob/mcz137.
984	Flowers TJ, Colmer TD. 2008. Salinity tolerance in halophytes. New Phytologist 179:
985	945-963.
986	Flynn KM, McKee KL, Mendelssohn IA. 1995. Recovery of freshwater marsh vegetation
987	after a saltwater intrusion event. Oecologia 103: 63-72.
988	Fourqurean JW, Rutten LM. 2004. The impact of Hurricane Georges on soft-bottom,
989	back reef communities: Site- and species-specific effects in south Florida seagrass
990	beds. Bulletin of Marine Science 75: 239-257.
991	Fowler-Walker MJ, Wernberg T, Connell SD. 2006. Differences in kelp morphology
992	between wave sheltered and exposed localities: morphologically plastic or fixed
993	traits? Marine Biology 148: 755-767.
994	Gallego-Tévar B, Grewell BJ, Futrell CJ, Drenovsky RE, Castillo JM. 2020. Interactive
995	effects of salinity and inundation on native Spartina foliosa, invasive S. densiflora,
996	and their hybrid from San Francisco Estuary, California. Annals of Botany 125:
997	doi.org/10.1093/aob/mcz170.
998	Garner KL, Chang MY, Fulda MT et al. 2015. Impacts of sea level rise and climate
999	change on coastal plant species in the central California coast. PeerJ 3: e958.
1000	Granek EF, Ruttenberg BI. 2007. Protective capacity of mangroves during tropical
1001	storms: a case study from 'Wilma' and 'Gamma' in Belize. Marine Ecological
1002	Progress Series 343 : 101-105.
1003	Gera A, Pages JF, Arthur R, Farina S, Roca G, Romero J, Alcoverro T. 2014. The
1004	effect of a centenary storm on the long-lived seagrass Posidonia oceanica.
1005	Limnology and Oceanography 59 : 1910-1918.

1006	Green MD, Miller TE. 2019. Germination traits explain deterministic processes in the
1007	assembly of early successional coastal dune vegetation. Estuaries and Coasts 42:
1008	1097–1103.
1009	Gurbisz C, Kemp WM, Sanford LP, Orth RJ. 2016. Mechanisms of storm-related loss
1010	and resilience in a large submersed plant bed. Estuaries and Coasts 39: 951-966.
1011	Guntenspergen GR, Cahoon DR, Grace J, et al. 1995. Disturbance and recovery of the
1012	Louisiana coastal marsh landscape from the impacts of Hurricane Andrew. Journal
1013	of Coastal Research: 324-339.
1014	Hallegatte S, Green C, Nicholls RJ, Corfee-Morlot J. 2013. Future flood losses in major
1015	coastal cities. Nature Climate Change 3: 802-806,
1016	Haller WT, Sutton DL, Barlowe WC. 1974. Effects of salinity on growth of several
1017	aquatic macrophytes. Ecology 55: 891-894.
1018	Hanley ME, Yip PYS, Hoggart SPG, et al. 2013. Riding the storm: The response of
1019	Plantago lanceolata to simulated tidal flooding. Journal of Coastal Conservation
1020	17 : 799-803.
1021	Hanley ME, Hoggart SPG, Simmonds DJ, et al. 2014. Shifting sands? Coastal protection
1022	by sand banks, beaches and dunes. Coastal Engineering 87: 136-146.
1023	Hanley ME, Gove TL, Cawthray GR, Colmer TD. 2017. Differential responses of three
1024	coastal grassland species to seawater flooding. Journal of Plant Ecology 10: 322-
1025	330.
1026	Hanley ME, Sanders SKD, Stanton H-M, Billington RA, Boden R. 2020a. A pinch of
1027	salt: Response of coastal grassland plants to simulated seawater inundation
1028	treatments. Annals of Botany 125: doi 10.1093/aob/mcz042
1029	Hanley ME, Hartley FC, Hayes L, Franco M. 2020b. Simulated seawater flooding
1030	reduces oilseed rape growth, yield, and progeny performance. Annals of Botany
1031	125 : doi.10.1093/aob/mcz026.
1032	Harris AL, Zinnert JC, Young DR. 2017. Differential response of barrier island dune
1033	grasses to species interactions and burial. Plant Ecology 218: 609-619.

1034	Hauser S, Meixler MS, Laba M. 2015. Quantification of impacts and ecosystem services
1035	loss in New Jersey coastal wetlands due to Hurricane Sandy storm surge. Wetlands
1036	35 : 1137-1148.
1037	Herbeck LS, Unger D, Krumme U, Liu SM, Jennerjahn TC. 2011. Typhoon-induced
1038	precipitation impact on nutrient and suspended matter dynamics of a tropical
1039	estuary affected by human activities in Hainan, China. Estuarine Coastal and Shelf
1040	Science 93 : 375-388.
1041	Hogan JA, Zimmerman JK, Thompson J, Nytch CJ, Uriarte M. 2016. The interaction
1042	of land-use legacies and hurricane disturbance in subtropical wet forest: twenty-one
1043	years of change. Ecosphere 7: e01405
1044	Hoggart SPG, Hanley ME, Parker DJ, et al. 2014. The consequences of doing nothing:
1045	The effects of seawater flooding on coastal zones. Coastal Engineering 87: 169-
1046	182.
1047	Huang H, Zinnert JC, Wood LK, Young DR, D'Odorico P. 2018. A non-linear shift
1048	from grassland to shrubland in temperate barrier islands. <i>Ecology</i> 99: 1671-1681.
1049	Hudson T, Keating K, Pettit A. 2015. Cost estimation for coastal protection - summary
1050	of evidence. Environment Agency UK, Report no. SC080039/R7.
1051	Imbert D. 2018. Hurricane disturbance and forest dynamics in east Caribbean mangroves.
1052	Ecosphere 9: e02231.
1053	IPCC, 2019. Summary for Policymakers. In: IPCC Special Report on the Ocean and
1054	Cryosphere in a Changing Climate [Pörtner H-O, Roberts DC, Masson-Delmotte V,
1055	P. et al., (eds.)]. IPCC, Geneva, Switzerland, In press.
1056	James RK, Silva R, van Tussenbroek BI et al., 2019. Maintaining tropical beaches with
1057	seagrass and algae: A promising alternative to engineering solutions. BioScience 69:
1058	136–142.
1059	Janousek CN, Buffington KJ, Thorne KM, Guntenspergen GR, Takekawa JY,
1060	Dugger BD. 2016. Potential effects of sea-level rise on plant productivity: species-
1061	specific responses in northeast Pacific tidal marshes. Marine Ecology Progress
1062	Series, 548 : 111-125.

1063	Kadiri M, Spencer KL, Heppell CM. 2012, Potential contaminant release from
1064	agricultural soil and dredged sediment following managed realignment. Journal of
1065	Soils and Sediments 12 : 1581–1592.
1066	Kendrick GA, Nowicki RJ, Olsen YS, et al., 2019. A systematic review of how multiple
1067	stressors from an extreme event drove ecosystem-wide loss of resilience in an iconic
1068	seagrass community. Frontiers in Marine Science 6: 455.
1069	Kirwan ML, Temmerman S, Skeehan EE, Guntenspergen GR, Fagherazzi S. 2016.
1070	Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6:
1071	253–260.
1072	Kosciuch TJ, Pilarczyk JE, Hong I, et al. 2018. Foraminifera reveal a shallow nearshore
1073	origin for overwash sediments deposited by Tropical Cyclone Pam in Vanuatu
1074	(South Pacific). Marine Geology 396: 171-185.
1075	Koske RE, Gemma JN, Corkidi L, Siguenza C, Rincon E. 2004. Arbuscular
1076	mycorrhizas in coastal dunes. In: Martinez ML, Psuty NP. (eds.) Coastal Dunes,
1077	Ecology and Conservation, Springer, Heidelberg, pp. 173-187.
1078	Kottler EJ, Gedan K. 2020. Seeds of change: will the soil seed bank support marsh
1079	migration? Annals of Botany 125: doi 10.1093/aob/mcz133
1080	Kowalski JL, DeYoe HR, Boza GH, Hockaday DL, Zimba PV. 2018. A comparison of
1081	salinity effects from Hurricanes Dolly (2008) and Alex (2010) in a Texas Lagoon
1082	System. Journal of Coastal Research 34: 1429-1438.
1083	Krauss KW Osland MJ. 2020. Tropical cyclones and the organization of mangrove
1084	forests: a review. Annals of Botany 125: doi.org/10.1093/aob/mcz161.
1085	Ladd CJT, Duggan-Edwards MF, Bouma TJ, Pagès JF, Skov MW. 2019. Sediment
1086	supply explains long-term and large-scale patterns in saltmarsh lateral expansion
1087	and erosion. Geophysical Research Letters doi.org/10.1029/2019GL083315.
1088	Langlois E, Bonis A, Bouzillé JB. 2001. The response of Puccinellia maritima to burial: A
1089	key to understanding its role in salt-marsh dynamics? Journal of Vegetation
1090	Science, 12 : 289-297.

1091	Langston AK, Kaplan DA, Putz FE. 2017. A casualty of climate change? Loss of
1092	freshwater forest islands on Florida's Gulf Coast. Global Change Biology 23: 5383-
1093	5397.
1094	Lantz TC, Kokelj SV, Fraser RH. 2015. Ecological recovery in an Arctic delta following
1095	widespread saline incursion. Ecological Applications 25: 172-185.
1096	Lapointe BE, Herren LW, Brewton RA, Alderman P. 2019. Nutrient over-enrichment
1097	and light limitation of seagrass communities in the Indian River Lagoon, an
1098	urbanized subtropical estuary. Science of the Total Environment 699: 134068.
1099	Larkum AWD, West RJ. 1990. Long-term changes of seagrass meadows in Botany Bay,
1100	Australia. Aquatic Botany 37: 55-70.
1101	Lawrence PJ, Smith GR, Sullivan MJP, Mossman HL. 2018. Restored saltmarshes lack
1102	the topographic diversity found in natural habitat. Ecological Engineering 115: 58-
1103	66.
1104	Leonardi N, Ganju NK, Fagherazzi S. 2016. A linear relationship between wave power
1105	and erosion determines salt-marsh resilience to violent storms and hurricanes.
1106	Proceedings of the National Academy of Sciences, 113: 64-68.
1107	Leonardi N, Carnacina I, Donatelli C, et al., 2018. Dynamic interactions between coastal
1108	storms and salt marshes: A review. Geomorphology 301: 92-107.
1109	Li F, Pennings SC. 2018. Responses of tidal freshwater and brackish marsh macrophytes
1110	to pulses of saline water simulating sea level rise and reduced discharge. Wetlands
1111	38: 885–891.
1112	Lum TD, Barton KE. 2020. Ontogenetic variation in salinity tolerance and ecophysiology
1113	of coastal dune plants. Annals of Botany 125: doi.org/10.1093/aob/mcz097.
1114	Mairal M, Caujapé-Castells J, Pellissier L, et al. 2018. A tale of two forests: ongoing
1115	aridification drives population decline and genetic diversity loss at continental scale
1116	in Afro-Macaronesian evergreen-forest archipelago endemics. Annals of Botany
1117	122 : 1005–1017.
1118	Malloch AJC, Bamidele JF, Scott AM. 1985. The phytosociology of British sea-cliff
1119	vegetation with special reference to the ecophysiology of some maritime cliff
1120	plants. <i>Vegetatio</i> 62 : 309-317.

1121	Masselink G, Scott T, Poate T, et al. 2015. The extreme 2013/14 winter storms:
1122	Hydrodynamic forcing and coastal response along the southwest coast of England.
1123	Earth Surface Processes and Landforms 41: 378-391.
1124	Masselink G, Hanley ME, Halwyn AC, et al., 2017. Evaluation of salt marsh restoration
1125	by means of self-regulating tidal gate - Avon estuary, south Devon, UK. Ecological
1126	Engineering 106 : 174-190.
1127	McKee KL, Mendelssohn IA 1989. Response of a freshwater marsh plant community to
1128	increased salinity and increased water level. Aquatic Botany 34: 301-316.
1129	McKenna S, Jarvis J, Sankey T, et al. 2015. Declines of seagrasses in a tropical harbour,
1130	North Queensland, Australia, are not the result of a single event. Journal of
1131	Biosciences 40 : 389-398.
1132	Meixler MS. 2017. Assessment of Hurricane Sandy damage and resulting loss in
1133	ecosystem services in a coastal-urban setting. Ecosystem Services 24: 28-46
1134	Mendelssohn IA, Kuhn NL. 2003. Sediment subsidy: effects on soil-plant responses in a
1135	rapidly submerging coastal salt marsh. Ecological Engineering, 21: 115-128.
1136	Middleton EA. 2009. Regeneration of coastal marsh vegetation impacted by hurricanes
1137	Katrina and Rita. Wetlands 29: 54-65.
1138	Millennium Ecosystem Assessment, 2005. Ecosystems and Human Well-being:
1139	Biodiversity Synthesis. World Resources Institute, Washington, DC.
1140	Minchinton TE. 2006. Rafting on wrack as a mode of dispersal for plants in coastal
1141	marshes. Aquatic Botany, 84: 372-376.
1142	Möller I, Kudella M, Rupprecht F, et al. 2014. Wave attenuation over coastal sale
1143	marshes under storm surge conditions. Nature Geoscience 7: 727-731.
1144	Mopper S, Wang YY, Criner C, Hasenstein K. 2004. Iris hexagona hormonal responses
1145	to salinity stress, leafminer herbivory, and phenology. <i>Ecology</i> 85 : 38–47.
1146	Mopper S, Wiens KC, Goranova GA. 2016. Competition, salinity, and clonal growth in
1147	native and introduced irises. American Journal of Botany 103: 1575–1581.
1148	Morris RL, Konlechner TM, Ghisalberti M, Swearer SE. 2018. From grey to green:
1149	Efficacy of eco-engineering solutions for nature-based coastal defence. Global
1150	Change Biology 24: 1827-1842.

1151	Morris RL, Graham TDJ, Kelvin J, Ghisalberti M, Swearer SE. 2020. Kelp beds as
1152	coastal protection: wave attenuation of Ecklonia radiata in a shallow coastal bay.
1153	Annals of Botany 125: doi.org/10.1093/aob/mcz127.
1154	Morton RA, Barras JA. 2011. Hurricane impacts on coastal wetlands: A half-century
1155	record of storm-generated features from southern Louisiana. Journal of Coastal
1156	Research, 27: 27-43.
1157	Mossman HL, Davy AJ, Grant A. 2012. Does managed coastal realignment create
1158	saltmarshes with 'equivalent biological characteristics' to natural reference sites?
1159	Journal of Applied Ecology 49: 1446-1456.
1160	Mossman HL, Grant A, Davy AJ. 2019. Manipulating saltmarsh microtopography
1161	modulates the effects of elevation on sediment redox potential and halophyte
1162	distribution. Journal of Ecology doi.10.1111/1365-2745.13229.
1163	Munns R, Tester M. 2008. Mechanisms of salt tolerance. Annual Review of Plant Biology
1164	59 : 651-681.
1165	Narayan S, Beck MW, Reguero BG, et al. 2016. The effectiveness. costs and coastal
1166	protection benefits of natural and nature-based defences. PLoS ONE 11: e0154735.
1167	Negrão S, Schmöckel SM, Tester M. 2017. Evaluating physiological responses of plants
1168	to salinity stress. Annals of Botany 119: 1–11.
1169	Noe GB, Zedler JB. 2001. Variable rainfall limits the germination of upper intertidal
1170	marsh plants in southern California. Estuaries, 24: 30-40.
1171	Noe G, Krauss K, Lockaby B, Conner WH, Hupp CR. 2013. The effect of increasing
1172	salinity and forest mortality on soil nitrogen and phosphorus mineralization in tidal
1173	freshwater forested wetlands. Biogeochemistry 114: 225–244.
1174	O'Brien JM, Scheibling RE, Krumhansl KA. 2015. Positive feedback between large-
1175	scale disturbance and density-dependent grazing decreases resilience of a kelp bed
1176	ecosystem. Marine Ecology Progress Series 522: 1-13.
1177	Ondiviela B, Losada IJ, Lara JL, et al. 2014. The role of seagrasses in coastal protection
1178	in a changing climate. Coastal Engineering 87: 158–168.

1179	Paling EI, Kobryn HT, Humphreys G. 2008. Assessing the extent of mangrove change				
1180	caused by Cyclone Vance in the eastern Exmouth Gulf, northwestern Australia.				
1181	Estuarine, Coastal and Shelf Science 77: 603–613.				
1182	Parmesan C, Hanley ME. 2015. Plants and climate change: complexities and surprises.				
1183	Annals of Botany 115: 849-864.				
1184	Pathikonda S, Meerow A, He Z, Mopper S. 2010. Salinity tolerance and genetic				
1185	variability in freshwater and brackish Iris hexagona colonies. American Journal of				
1186	Botany 97 : 1438-1443.				
1187	Pessarrodona A Foggo A, Smale DA. 2018. Can ecosystem functioning be maintained				
1188	despite climate-driven shifts in species composition? Insights from novel marine				
1189	forests. Journal of Ecology 107: 91–104.				
1190	Platt WJ, Doren RF, Armentano, TV. 2000. Effects of Hurricane Andrew on stands of				
1191	slash pine (Pinus elliotii var. densa) in the everglades region of south Florida. Plant				
1192	Ecology 146 : 43–60.				
1193	Platt WJ, Joseph D Ellair DP. 2015. Hurricane wrack generates landscape-level				
1194	heterogeneity in coastal pine savanna. Ecography 38: 63-73.				
1195	Preen AR, Long WJL, Coles RG. 1995. Flood and cyclone related loss, and partial				
1196	recovery, of more than 1000 km ² of seagrass in Hervey-Bay, Queensland, Australia.				
1197	Aquatic Botany 52: 3-17.				
1198	Pruitt JN, Little AG, Majumdar SJ, Schoener TW, Fisher DN 2019. Call-to-Action: A				
1199	global consortium for tropical cyclone ecology. Trends in Ecology and Evolution				
1200	doi.org/10.1016/j.tree.2019.04.009.				
1201	Rajaniemi TK, Barrett DT. 2018. Germination responses to abiotic stress shape species				
1202	distributions on coastal dunes. Plant Ecology 219: 1271–1282.				
1203	Reidenbach MA, Thomas EL. 2018. Influence of the seagrass, Zostera marina, on wave				
1204	attenuation and bed shear stress within a shallow coastal bay. Frontiers in Marine				
1205	Science 5: 397.				
1206	Reimann L, Vafeidis AT, Brown S, Hinkel J, Tol RSJ. 2018. Mediterranean UNESCO				
1207	World Heritage at risk from coastal flooding and erosion due to sea-level rise.				
1208	Nature Communications 9: 4161.				

1209	Ridler MS, Dent RC, Arrington DA. 2006. Effects of two hurricanes on Syringodium				
1210	filiforme, manatee grass, within the Loxahatchee River Estuary, southeast Florida.				
1211	Estuaries and Coasts 29: 1019-1025.				
1212	Rodríguez-Rodríguez P, de Castro AGF, Seguí J, Traveset A, Sosa PA 2019. Alpine				
1213	species in dynamic insular ecosystems through time: conservation genetics and				
1214	niche shift estimates of the endemic and vulnerable Viola cheiranthifolia. Annals of				
1215	Botany 123: 505-519.				
1216	Rupprecht F, Möller I, Paul M, et al. 2017. Vegetation-wave interactions in salt marshes				
1217	under storm surge conditions. Ecological Engineering, 100: 301-315.				
1218	Sachithanandam V, Mageswaran T, Sridhar R, Purvaja R, Ramesh R. 2014.				
1219	Assessment of Cyclone Lehar's impact on seagrass meadows in Ross and Smith				
1220	Islands, North Andaman. Natural Hazards 72: 1253-1258.				
1221	Schile L, Mopper S. 2006. The deleterious effects of salinity stress on leafminers and their				
1222	freshwater host. Ecological Entomology 31: 345–351.				
1223	Schuerch M, Vafeidis A, Slawig T, Temmerman S. 2013. Modelling the influence of				
1224	changing storm patterns on the ability of a salt marsh to keep pace with sea level				
1225	rise. Journal of Geophysical Research: Earth Surface, 118: 84-96.				
1226	Schuerch S, Spencer T, Temmerman S, et al., 2018. Future response of global coastal				
1227	wetlands to sea-level rise. Nature 561: 231–234.				
1228	Schwarz C, Brinkkemper J, Ruessink G. 2019. Feedbacks between biotic and abiotic				
1229	processes governing the development of foredune blowouts: A Review. Journal of				
1230	Marine Science and Engineering 7: doi.org/10.3390/jmse7010002				
1231	Seymour RJ, Tegner MJ, Dayton PK, Parnell PE. 1989. Storm wave-induced mortality				
1232	of giant-kelp, Macrocystis pyrifera, in southern-California. Estuarine Coastal and				
1233	Shelf Science 28 : 277-292.				
1234	Shanks AL, Wright WG. 1986. Adding teeth to wave action - the destructive effects of				
1235	wave-borne rocks on intertidal organisms. Oecologia 69: 420-428.				
1236	Shao D, Zhou W, Bouma TJ, et al., 2020. Physiological and biochemical responses of the				
1237	salt-marsh plant Spartina alterniflora to long-term wave exposure. Annals of Botany				
1238	125: doi 10.1093/aob/mcz067				

1239	Shepard CC, Crain CM, Beck MW. 2011. The protective role of coastal marshes: A
1240	systematic review and meta-analysis. PLoS ONE 6: e27374.
1241	Sjøgaard KS, Valdemarsen TB, Treusch AH. 2018. Responses of an agricultural soil
1242	microbiome to flooding with seawater after managed coastal realignment.
1243	Microorganisms 6: doi: 10.3390/microorganisms6010012.
1244	Smale DA, Vance T. 2016. Climate-driven shifts in species' distributions may exacerbate
1245	the impacts of storm disturbances on North-east Atlantic kelp forests. Marine and
1246	Freshwater Research 67: 65-74.
1247	Smith SE, Read DJ. 2008. Mycorrhizal Symbiosis, 3 rd edn, Elsevier, Academic Press, New
1248	York, USA.
1249	Spencer T, Möller I, Rupprecht F, et al. 2016. Salt marsh surface survives true-to-scale
1250	simulated storm surges. Earth Surface Processes and Landforms, 41: 543-552.
1251	Stagg CL, Baustian MM, Perry CL, Carruthers TJB, Hall CT. 2018. Direct and
1252	indirect controls on organic matter decomposition in four coastal wetland
1253	communities along a landscape salinity gradient. Journal of Ecology 106: 655-670.
1254	Stagg CL, Osland MJ, Moon JA, et al., 2020. Quantifying hydrologic controls on local-
1255	and landscape-scale indicators of coastal wetland loss. Annals of Botany 125: doi
1256	10.1093/aob/mcz144.
1257	Steinke TD, Ward CJ. 1989. Some effects of the cyclones Domoina and Imboa on
1258	mangrove communities in the St. Lucia estuary, South Africa. South African
1259	Journal of Botany 55 : 340–348.
1260	Steneck RS, Arnold SN, Boenish R, et al. 2019. Managing recovery resilience in coral
1261	reefs against climate-induced bleaching and hurricanes: a 15 year case study from
1262	Bonaire, Dutch Caribbean. Frontiers in Marine Science 6: doi:
1263	10.3389/fmars.2019.00265.
1264	Steyer GD, Perez BC, Piazza SC, Suir G 2007. Potential consequences of saltwater
1265	intrusion associated with hurricanes Katrina and Rita. In: Science and the storms -
1266	the USGS response to the hurricanes of 2005. Report 13066C, Reston Virginia,
1267	USA.

1268	Sullivan MJP, Davy AJ, Grant A, Mossman HL. 2018. Is saltmarsh restoration success					
1269	constrained by matching natural environments or altered succession? A test using					
1270	niche models. Journal of Applied Ecology 55: 1207–1217.					
1271	Sykes MT, Wilson JB. 1988. An experimental investigation into the response of some					
1272	New Zealand sand dune species to salt spray. Annals of Botany 62: 159-166.					
1273	Tate AS, Battaglia LL. 2013. Community disassembly and reassembly following					
1274	experimental storm surge and wrack application. Journal of Vegetation Science 24					
1275	46-57.					
1276	Temmerman S, Bouma TJ, van de Koppel J, et al. 2007. Vegetation causes channel					
1277	erosion in a tidal landscape. Geology 35: 631-634.					
1278	Temmerman S, Govers G, Wartel S, Meire P. 2004. Modelling estuarine variations in					
1279	tidal marsh sedimentation: Response to changing sea level and suspended sediment					
1280	concentrations. Marine Geology 212: 1–19.					
1281	Temmerman S, Meire P, Bouma TJ, et al. 2013. Ecosystem-based coastal defence in the					
1282	face of global change. Nature 504: 79–83.					
1283	Thomsen MS, Wernberg T. 2005. Miniview: What affects the forces required to break or					
1284	dislodge macroalgae? European Journal of Phycology 40: 139-148.					
1285	Thomsen MS, Wernberg T, Kendrick GA. 2004. The effect of thallus size, life stage,					
1286	aggregation, wave exposure and substratum conditions on the forces required to					
1287	break or dislodge the small kelp <i>Ecklonia radiata</i> . <i>Botanica Marina</i> 47 : 454-460.					
1288	Tolliver KS, Martin DW, Young DR. 1997. Freshwater and saltwater flooding response					
1289	for woody species common to barrier island swales. Wetlands 17: 10-18.					
1290	Torresan S, Critto A, Rizzi J, Marcomini A. 2012. Assessment of coastal vulnerability to					
1291	climate change hazards at the regional scale: the case study of the north Adriatic					
1292	sea. Natural Hazards and Earth System Sciences 12: 2347-2368.					
1293	Uhrin AV, Schellinger J. 2011. Marine debris impacts to a tidal fringing-marsh in North					
1294	Carolina. Marine Pollution Bulletin, 62: 2605-2610.					
1295	Ury EA, Anderson SM, Peet RK, Bernhardt ES, Wright JP. 2020. Succession,					
1296	regression and loss: does evidence of saltwater exposure explain recent changes in					

1297	the tree communities of North Carolina's Coastal Plain? Annals of Botany 125:
1298	doi.org/10.1093/aob/mcz039.
1299	Valiela I, Rietsma CS. 1995. Disturbance of salt marsh vegetation by wrack mats in Great
1300	Sippewissett Marsh. Oecologia, 102: 106-112.
1301	Valiela I, Peckol P, D'Avanzo C, et al. 1998. Ecological effects of major storms on
1302	coastal watersheds and coastal waters: Hurricane Bob on Cape Cod. Journal of
1303	Coastal Research 14: 218-238.
1304	Van Coppenolle R, Temmerman S. 2019. A global exploration of tidal wetland creation
1305	for nature-based flood risk mitigation in coastal cities. Estuarine, Coastal and Shelf
1306	Science 226 : 106262
1307	Van Zandt PA, Mopper S. 2002. Delayed and carryover effects of salinity on flowering in
1308	Iris hexagona (Iridaceae). American Journal of Botany 89: 364–383.
1309	Van Zandt PA, Tobler MA, Mouton E, Hasenstein KH, Mopper S. 2003. Positive and
1310	negative consequences of salinity stress for the growth and reproduction of the
1311	clonal plant, Iris hexagona. Journal of Ecology 91: 837-846.
1312	Vasseur DA, DeLong JP, Gilbert B, et al. 2014. Increased temperature variation poses a
1313	greater risk to species than climate warming. Proceedings of the Royal Society B-
1314	Biological Sciences 281 : 1–8.
1315	Viavattene C, Jiménez JA, Ferreira O, et al. 2018. Selecting coastal hotspots to storm
1316	impacts at the regional scale: the Coastal Risk Assessment Framework. Coastal
1317	Engineering 134 : 33-47.
1318	Vuik V, Jonkman SN, Borsje BW, Suzuki T. 2016. Nature-based flood protection: The
1319	efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coastal
1320	Engineering 116 : 42–56.
1321	Vuik V, Suh Heo HY, Zhu Z, Borsje BW, Jonkman SN. 2018. Stem breakage of sale
1322	marsh vegetation under wave forcing: a field and model study. Estuarine, Coastal
1323	and Shelf Science 200: 41-58.
1324	Waters JM, King TM, Fraser CI, Craw D. 2018. Crossing the front: contrasting storm-
1325	forced dispersal dynamics revealed by biological, geological and genetic analysis of
1326	beach-cast kelp. Journal of the Royal Society Interface 15: 20180046.

L327	White AC, Colmer TD, Cawthray GR, Hanley ME. 2014. Variable response of three
1328	Trifolium repens ecotypes to soil flooding by seawater. Annals of Botany 114: 347-
L329	356.
1330	White E, Kaplan D. 2017. Restore or retreat? Saltwater intrusion and water management
1331	in coastal wetlands. Ecosystem Health and Sustainability 3 e01258.
1332	Williams HFL, Flanagan WM. 2009. Contribution of Hurricane Rita storm surge
1333	deposition to long-term sedimentation in Louisiana coastal woodlands and marshes.
1334	Journal of Coastal Research 56 : 1671-1675.
1335	Zhu Z, Yang Z, Bouma TJ. 2020. Biomechanical properties of marsh vegetation in space
1336	and time: effects of salinity, inundation and seasonality. Annals of Botany 125: doi
L337	10.1093/aob/mcz063.
1338	Zimmerman JK, Hogan JA, Nytch CJ, Bithorn JE. 2018. Effects of hurricanes and
1339	climate oscillations on annual variation in reproduction in wet forest, Puerto Rico.
L340	Ecology 99 : 1402:1410
L341	Zedler JB. 2010. How frequent storms affect wetland vegetation: a preview of climate-
L342	change impacts. Frontiers in Ecology and the Environment, 8: 540-547.
1343	

1344	Figure Legend
1345	Figure 1. A summary of the principal research priorities $(I-IV)$ and avenues for future
1346	study needed to understand the response of estuarine and coastal plant communities to the
1347	disturbances associated with extreme storm events. The proposed level and overlap of study
1348	(Individual plant, Ecosystem, and Landscape) for each priority is shown. CRAF - Coastal
1349	Flood Risk Frameworks; SDM – Species Distribution Model
1350	
1351	

1353

Table 1 A summary of the principal acute threats and example responses reported for (semi-)natural coastal plant communities subject to extreme storm events.

	Habitat	Threat	Response	Example studies
Jal	Kelp-forests	Physical damage & dislodgment	Storms cause widespread mortality, but age- and species-specific effects.	Thomsen <i>et al.</i> (2004); Smale and Vance (2016)
	Seagrass	Physical damage	Major losses of seagrass biomass following tropical cyclones.	Sachithanandam et al. (2014); Culliver et al. (2017)
Sub-tidal		Sand deposition	High deposition causes (species-specific) mortality.	Cabaco <i>et al.</i> (2008)
้ง		Turbidity	Sediment run-off had greater negative impact than storm damage.	Carlson et al. (2010)
		Rapid salinity change	Long-term, post-storm impacts on community composition.	Ridler <i>et al</i> . (2006); Benjamin <i>et al</i> . (1999)
	Saltmarsh	Physical damage	Stem breakage likely, although response differs among species. Denudation of vegetation can also occur.	Möller et al. (2014); Vuik et al. (2018); Cahoon (2006)
tidal		Erosion	Storm-induced erosion of the fronting tidal flat may induce marsh erosion and vegetation loss.	Callaghan <i>et al.</i> (2010); Bouma <i>et al.</i> (2016); Leonardi <i>et al.</i> , (2016, 2018)
Inter-tidal		Sand, sediment or litter deposition	Burial under sediment or debris can kill vegetation (depending on timing, depth and species).	Callaway and Zedler (2004); Meixler (2017); Leonardi et al., (2018)
		Changes in salinity or inundation	Heavy rainfall can create opportunities for germination, but salinity changes cause shifts in species and communities.	Zedler (2010); Meixler (2017); Edge <i>et al.</i> , (2020)

		Physical damage/ Erosion	Species-specific variation in tree response (including mortality) to storm damage.	Doyle <i>et al.</i> (1995); Imbert (2018)
	Mangrove		Scour caused <i>Avicenna marina</i> mortality along South African shoreline fringe.	Steinke and Ward (1989)
		Sand/ Litter deposition	Impact of litter largely unknown (see Krauss and Osland 2020), but increased decomposition influences carbon-budgets.	Barr <i>et al.</i> (2012)
			Phosphorus-rich sediments stimulate post- storm forest productivity.	Castañeda-Moya <i>et al.</i> (2010); Adame <i>et al.</i> (2013)
			Sediments covered roots, causing anoxia and tree mortality	Paling <i>et al.</i> (2008)
	Sand dunes	Physical damage/ Erosion	Sediment loss negatively affects vegetation, but extent depends on dune morphology and vegetation cover.	Hanley et al. (2014); Miller et al. (2015); Schwarz et al. (2019)
		Sand deposition	Sand accumulation induced (species-specific) morphological responses.	Harris et al. (2017); Brown and Zinnert (2018)
idal		Saline Inundation	Reduced plant performance but species- specific variation in 'stress' responses.	Camprubi <i>et al.</i> , (2012); Hoggart <i>et al</i> . (2014); Hanley <i>et al</i> . (2020a)
Supra-tidal	Freshwater marshland	Erosion	Plant mortality facilitated subsequent sediment loss and erosion.	Howes <i>et al.</i> (2010); Hauser <i>et al.</i> (2015)
Su		Litter deposition	Experimental litter deposition reduced species diversity.	Tate and Battaglia (2013)
		Saline Inundation	Widespread plant mortality observed.	Abbott and Battaglia (2015); Hauser et al. (2015)
	Other habitats	Physical damage	Storm damage caused localised <i>Pinus</i> elliotii mortality in Florida everglades.	Platt <i>et al</i> . (2000)
		Litter deposition	High litter density reduced species	Tate and Battaglia, (2013);

Coastal plants and extreme storm events

			diversity in SE USA pine savannah.	Platt et al. (2015)
		Saline Inundation	Negative effects on recovery of Canadian tundra, but with species-specific variation.	Lantz <i>et al.</i> (2015)
			High mortality of Floridian 'freshwater forest' species.	Langston et al. (2017)

I. Reproduction and recruitment

II. Multiple stressors

III. Community Interactions

IV. Storm prediction and ecosystem services

Manipulative
experiments to
determine impacts
of erosion, litter,
sedimentation,
inundation, flow &
waves on;

- Fecundity
- Germination
- Seedling establishment
- Vegetative spread

Manipulative
experiments to
determine
ecophysiological
responses to ACClinked stressors

- Temperature (averages & extremes)
- Precipitation
- Flooding
- Litter
- Elevated CO₂

Manipulative experiments to elucidate how storms influence post-disturbance;

- Plant competition & facilitation
- Plant-animal interactions
- Plant-microbial interactions
- Soil biogeochemistry

Long-term
ecological
(including remote
sensing)
monitoring to
generate predictive
models
underpinned by
priorities I-III.

- Geomorphological processes
- •CRAF
- •SDMs

Individual plant

Landscape

Ecosystem