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Abstract 19 

Moving water exerts drag forces on vegetation. The susceptibility of vegetation to bending and 20 

breakage determines its flow resistance, and chances of survival, under hydrodynamic loading. To 21 

evaluate the role of individual vegetation parameters in this water-vegetation interaction, we 22 

conducted drag force measurements under a wide range of wave loadings in a large wave flume. 23 

Artificial vegetation elements were used to manipulate stiffness, frontal area in still water and material 24 

volume as a proxy for biomass. The aim was to compare: (i) identical volume but different still frontal 25 
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area, (ii) identical stiffness but different still frontal area, and (iii) identical still frontal area but different 26 

volume. 27 

Comparison of mimic arrangements showed that stiffness and the dynamic frontal area (i.e., frontal 28 

area resulting from bending which depends on stiffness and hydrodynamic forcing) determines drag 29 

forces. Only at low orbital-flow velocities did the still frontal area dominate the force-velocity 30 

relationship and it is hypothesised that no mimic bending took place under these conditions.  31 

Mimic arrangements with identical stiffness but different overall material volume and still frontal area 32 

showed that forces do not increase linearly with increasing material volume and it is proposed that 33 

short distances between mimics cause their interaction and result in additional drag forces. A model, 34 

based on effective leaf length and characteristic plant width developed for unidirectional flow, 35 

performed well for the force time series under both regular and irregular waves. However, its 36 

uncertainty increased with increasing interaction of neighbouring mimics. 37 

 38 
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 41 

1. Introduction 42 

It has been widely recognised that the interaction of flexible littoral vegetation (e.g. seagrass, 43 

salt marsh) with both oscillatory and unidirectional flow in shallow marine environments leads to a 44 

reduction of water velocity and hydrodynamic energy (Lightbody and Nepf, 2006; Möller et al., 1999; 45 

Yang et al., 2012). Moreover, recently Möller et al. (2014) showed that a transplanted salt marsh is 46 

even capable of substantial wave height reduction under simulated storm surge conditions. Given the 47 

increasing need for coastal protection, there is high interest in nature-based coastal defence. Using 48 

intertidal vegetation in such schemes is one of the most promising approaches to date (Barbier et al., 49 

2008; Bouma et al., 2014; Temmerman et al., 2013). However, implementing such nature-based 50 

coastal defence schemes requires high quality modelling capability of flow and wave dissipation by 51 
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vegetation fields, and hence a mechanistic understanding of vegetation-hydrodynamic interaction. The 52 

flow reducing capacity of vegetation is based on the drag the vegetation exerts on the flow (either 53 

unidirectional or oscillatory) which can be expressed by the drag coefficient CD. In return, the 54 

vegetation canopy is exposed to these drag forces and its resistance to these determines its survival 55 

(Callaghan et al., 2007; Denny et al., 1998). Estimation of these forces has therefore received 56 

considerable attention from both the hydraulic (Chen et al., 2011; Henry and Myrhaug, 2013; 57 

Siniscalchi et al., 2012) and ecological (Carrington, 1990; Gaylord et al., 2003; Sand-Jensen, 2003) 58 

research communities. 59 

The drag expressed by CD can be used to estimate the rate of frictional dissipation which leads 60 

to the reduction of wave energy (Dalrymple et al., 1984). Several models have been developed to 61 

estimate CD from wave and vegetation parameters (Dalrymple et al., 1984; Kobayashi et al., 1993; Maza 62 

et al., 2013; Méndez and Losada, 2004), expressed as a function of either the Reynolds number Re or 63 

the Keulegan-Carpenter number KC (see Henry et al. (2015) for a comprehensive review). These 64 

models have been applied to wave dissipation datasets from both field (Bradley and Houser, 2009; 65 

Paul and Amos, 2011) and laboratory studies (Augustin et al., 2009; Houser et al., 2015; Stratigaki et 66 

al., 2011) in low to medium energy wave conditions. Dissipation of waves with heights in excess of 20 67 

cm in water depths greater than 1 m above a typical salt marsh canopy has so far only been measured 68 

by Möller et al. (2014) in a large wave flume, and by Yang et al. (2012) in the field. Möller et al. (2014) 69 

show that under high incident wave energy levels the structural integrity of the vegetation elements 70 

is exceeded and plant elements begin to fold and break, rather than flex and bend as they do in 71 

response to low to medium energy conditions. As vegetation response changes with changing 72 

hydrodynamic forcing, a drag coefficient which assumes plant rigidity can thus not necessarily be used 73 

to calculate the drag forces acting on the vegetation, particularly when extrapolating to extreme 74 

conditions (Bell, 1999). It is thus necessary to determine the drag forces acting on salt marsh vegetation 75 

directly, in order to assess its susceptibility to physical damage during storm surges. Only then will it 76 

be possible to properly assess vegetation resilience under such conditions.  77 
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Available direct measurements of drag forces on natural plants are scarce and, due to the 78 

restricted dimensions of most flumes, typically limited to small waves (wave height H < 7 cm) or low-79 

velocity unidirectional flow (Bouma et al., 2005; Bouma et al., 2010). Laboratory measurements with 80 

two intertidal plant species (Spartina anglica and Zostera noltii) showed that under those relatively 81 

benign conditions, the drag forces decrease with decreasing stiffness and suggest that bending of the 82 

flexible plants causes this reduction (Bouma et al., 2005). This observation agrees well with other 83 

research undertaken on drag reduction and reconfiguration (Boller and Carrington, 2006; O’Hare et 84 

al., 2007; Siniscalchi and Nikora, 2012), indicating that the effective frontal area after reconfiguration 85 

is a major factor in explaining drag. On the other hand, systematic studies with both real (Bouma et 86 

al., 2010; Paul and Amos, 2011) and artificial (Paul et al., 2012) flexible coastal vegetation suggests that 87 

wave attenuation, and hence CD, in shallow water environments is governed by the amount of above 88 

ground standing biomass rather than by individual parameters such as leaf length or vegetation 89 

stiffness. This observation is also supported by a study on fresh water macrophytes (Penning et al., 90 

2009).  91 

According to theory, the drag force F acting on a plant, is related to the frontal surface area A 92 

which in return depends on vegetation stiffness (Aberle and Järvelä, 2013; Bouma et al., 2010). This 93 

relationship can be described as 94 

  � = ������	
  (1) 95 

where ρ is density of water, u is water velocity and β is a tuning parameter which depends on the 96 

streamlining of the plant, typically <2 for flexible objects, and 2 for rigid objects (Vogel, 1994). Biomass 97 

is not explicitly included in this equation but biomass investments in stem material will typically be 98 

reflected in shoot stiffness and thus plant shape (Bouma et al., 2010). To account for reconfiguration 99 

in equation 1, the parameters CD, A, β or a combination of these three have been used. Statzner et al. 100 

(2006) for instance propose to change CD and/or A to account for plant reconfiguration, while Denny 101 

and Gaylord (2002) suggest the maximum projected area to be a constant A and to reflect shape 102 

changes in CD and β. Luhar and Nepf (2011) have argued that plant posture, i.e. the flow-dependent 103 
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position of the plant and all its components within the water, affects streamlining and frontal area and 104 

express this change through an 'effective leaf length'. They thus advocate constant CD and β and 105 

propose A to be the product of a constant characteristic width and a variable effective leaf length. In 106 

addition to having only one variable parameter, the latter model has the advantage that all necessary 107 

parameters can be derived from material properties and flow measurements and do not require 108 

knowledge of plant posture. However, the model has so far only been validated under unidirectional 109 

flow. 110 

From the existing data, it appears that vegetation stiffness (and resulting frontal area for any 111 

given applied force) and biomass are both key drivers in wave attenuation and associated drag forces. 112 

However, their respective relative importance in determining drag force and their potential 113 

interactions are not yet well understood. In order to unravel these relationships and improve the 114 

assessment of drag forces based on vegetation parameters, we conducted controlled experiments with 115 

plant mimics - in the form of flexible plastic strips - under a range of wave conditions. These strips were 116 

combined in such a way, that we maintained either (i) a constant frontal area, but with varying biomass 117 

(i.e., same number of strips but with different thickness; 8 x 1 mm strips vs. 8 x 2 mm strips), (ii) an 118 

identical biomass, but a contrasting frontal area (i.e., few thick strips or more thin strips to obtain a 119 

constant volume; 8 x 1 mm strips, 4 x 2 mm strips or 2 x 4 mm strips) or (iii) an identical stiffness 120 

between shoots, but a contrasting frontal area (i.e., contrasting numbers of identical strips; 4 x 2 mm 121 

strips vs. 8 x 2 mm strips). Moreover, we used the obtained data to evaluate whether or not the model 122 

based on effective leaf length (Luhar and Nepf, 2011) is also applicable to drag forces under the 123 

oscillatory motion of waves. Whilst we appreciate that coastal vegetation is often exposed to breaking 124 

waves in the swash zone, we limited our tests to non-breaking waves. This approach reduces the 125 

complexity of hydrodynamics, allowing us to focus on the effect of frontal area, biomass and stiffness 126 

of the vegetation elements. For the first time, the direct drag measurements in this study also covered 127 

wave loading under extreme events. The measurements reported here will, in particular, help improve 128 
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existing drag models and, in general, inform future studies on vegetation resilience to high energy 129 

wave forcing. 130 

 131 

2. Methods 132 

Experiments were carried out in conjunction with tests of wave attenuation over natural salt marsh 133 

transplants (Möller et al., 2014). They were conducted in the 5 m wide, 7 m deep and approx. 310 m 134 

long Large Wave Flume (GWK) of the Forschungszentrum Küste (FZK) in Hannover, Germany.  135 

 136 

2.1. Model setup 137 

An elevated test section of 60 m length was constructed approx. 95 m from the wave paddle which 138 

raised the salt marsh and drag sensors 1.5 m above the flume floor. This was necessary to ensure 139 

sufficient water depth at the wave paddle to generate the desired waves and to allow waves to fully 140 

develop before reaching the test section. At the beginning of the test section, a concrete ramp with a 141 

slope of 1:1.7 for 1.2 m, followed by a slope of 1:10 over a distance of 7 m, was installed to allow for a 142 

smooth transition of waves (Figure 1a). Here waves shoaled, but did not break, before interacting with 143 

the strip arrangements for all treatments considered here. At the end of the test section, a gravel slope 144 

(1:10) was constructed for the same purpose. Wave breaking at the 1:6 asphalt slope at the end of the 145 

flume minimised wave reflection and active wave absorption of the wave maker was employed for the 146 

same purpose. 147 

On the level test platform, 7.15 m away from the front edge, five drag sensors were deployed in a line 148 

normal to the direction of wave approach with the sensor heads flush with the flume floor. The drag 149 

sensors were installed 30 cm apart starting 106 cm from the flume wall (Figure 1b). They operated on 150 

the principle of a wheatstone bridge (Carrington, 1990; Denny, 1988) and measured forces in two 151 

directions up to 10 N (accuracy ±0.5% F.S., developed by Deltares). They were deployed to capture 152 

forces in the direction of, and counter to, wave propagation along the flume. An electromagnetic 153 

current meter (EMCM) was also deployed on the same cross-section, located 76 cm from the flume 154 
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wall (Figure 1b). The EMCM was set to record point measurements at a height of 15 cm above the test 155 

platform. This height corresponds to half the height of mimic arrangements which were slightly set off 156 

the ground by the metal bar fitting (Figure 1c). It was chosen as a representative value for the bulk 157 

velocity acting on the arrangements for the non-uniform velocity profile under wave motion. Data 158 

from all instruments was collected simultaneously at a sampling rate of 100 Hz. 159 

A range of wave conditions (wave heights of between 0.1 and 0.9 m and wave periods between 1.4 160 

and 5.1 s) was applied in two different water depths (1 and 2 m above the test platform), using both 161 

regular and irregular waves. Irregular waves were generated with a JONSWAP spectrum (peak 162 

enhancement factor 3.3) over 1000 waves and then followed by a regular wave test run (n = 100 waves) 163 

with a wave height corresponding to the zeroth-moment wave height (Hm0) of the irregular test. Active 164 

wave absorption at the end of each test and sufficient waiting time ensured that all tests started with 165 

still water level. Not all tests yielded drag data, due to overloading of the sensors or instrument failure; 166 

these tests were excluded from the subsequent analysis. 167 

 168 

2.2. Plant mimics 169 

For the force measurements in the flume, plastic strips attached to the drag sensors were used as a 170 

simplified representation of vegetation, or vegetation mimic, with varying degrees of stiffness. While 171 

the strips do not represent a particular plant species, they enabled us to easily manipulate individual 172 

parameters and hence assess their effect on drag in a more controlled fashion than would have been 173 

possible with real plants. A horizontal metal bar was mounted on each drag sensor and oriented 174 

normal to the wave direction. On the metal bars of four drag sensors different sets of plastic strips 175 

were mounted (Figure 1c). The fifth drag sensor was fitted with the horizontal metal bar but without 176 

any of the plastic strips to allow recording of the drag forces exerted on the mounting-bar alone as an 177 

experimental control treatment. Strips were all cut from Lexaan plates (mass density 1240 kg m-3) to a 178 

standard length and width of 25 cm and 0.55 cm respectively, but using plates of three different 179 

thicknesses (1, 2, and 4 mm). Lexaan was selected as it is a highly flexible type of plastic but shows a 180 
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distinct difference in stiffness between the three material thicknesses chosen here. Thicknesses were 181 

chosen so as to ensure that all mimics had sufficient rigidity to make their movement stiffness-182 

dominated rather than buoyancy-dominated (Luhar and Nepf, 2011) and were yet flexible enough to 183 

be considered non-rigid. By varying the material thickness (simulated 'stiffness') the bending behaviour 184 

and hence frontal area was varied while keeping the material properties identical for ease of 185 

comparison.  186 

In addition, the number of strips per drag sensor was varied to achieve a range of different material 187 

volumes (simulated 'biomass') per drag sensor exposed to the same experimental conditions (Table 1). 188 

To characterise the material, its flexural rigidity was derived by a 3-point-bending test according to the 189 

methodology described by Rupprecht et al. (2015). A sample was placed horizontally across two 190 

supporting bars spaced 15 times the sample thickness and the centre was pushed down with a third 191 

bar. The force required to push the sample down a given distance was recorded and the slope of the 192 

force-distance relationship (P/h) was used to determine flexural rigidity (J): 193 

 � = �
������   (2) 194 

where s is the distance between supporting bars (Paul et al., 2014). 195 

2.3. Data processing 196 

Horizontal orbital velocities were obtained from the EMCM time series. To eliminate noise from the 197 

signal, a Fast Fourier Transformation was conducted on the whole time series and a low pass filter (fl 198 

= 0.7 Hz) applied. For regular wave tests, the data were re-transformed into the time domain and the 199 

first 11 fully developed waves were used for subsequent analysis (Figure 2a). This eliminated any 200 

effects caused by reflection from the end of the flume. Zero-upcrossing was used to identify individual 201 

waves from the horizontal component of the velocity data and determine maximum horizontal orbital 202 

velocity ur,max and period Tr for each wave. This data was then averaged to yield a single value for each 203 

test. Moreover, time series of the individual waves were averaged to obtain a representative wave 204 

velocity time series at 15 cm above the test platform. To reduce noise in the representative time series, 205 

the longest and shortest wave in each record were removed, resulting in n = 9 for averaging. 206 
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For the irregular wave tests, elimination of reflection and averaging were not possible and 207 

consequently the whole time series of fully developed waves was used for spectral analysis using Fast 208 

Fourier Transformation. An additional high pass filter (fp/2.1, fp = peak frequency) was applied and a 209 

representative horizontal orbital velocity (ui,m0) (analogue to standard wave height analysis) computed 210 

  	�,�� = 4�� S(f)�∆f�
�!�  (3) 211 

where m is the total number of frequency components, S(f) is the velocity spectrum and Δf the 212 

frequency band width. Values refer to the measurement point 15 cm above the bed which corresponds 213 

to half the mimic arrangement height and is considered the location where the flow is representative 214 

of the bulk velocity acting on the mimics. Processing of time series for drag forces was done analogous 215 

to horizontal orbital velocities to obtain Fr for regular and Fm0 for irregular wave tests. Fm0 is the force 216 

derived from the 0th moment of the force spectrum SF(f) and hence a representative parameter to 217 

describe the force acting by the waves constituting the applied wave spectrum. 218 

To remove the impact of the horizontal bar to which the mimics were attached (Figure 1c), control 219 

runs with the strip-free bar were processed first. Consecutively, a best fit for Fcontrol ~ u² in 220 

correspondence with the Luhar and Nepf (2011) model was found for regular and irregular waves, 221 

respectively: 222 

  F#,$%&'#%( = 0.53u|u|    (4) 223 

  F/�,$%&'#%( = 0.22u|u|    (5) 224 

From these relationships, control time series were computed for each test run and subtracted from 225 

the raw force time series for each mimic arrangement prior to processing according to the above 226 

protocol. 227 

 228 

2.4. Modelling 229 
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To estimate mimic posture without knowledge of its bending angle, the buoyancy parameter B and the 230 

Cauchy number Ca, i.e. the two dimensionless parameters driving plant posture, were derived (Luhar 231 

and Nepf, 2011). 232 

  1 = ∆23456�7      (6) 233 

  �8 = �� 29:4;
�6�7     (7) 234 

where Δρ is the difference in density between water and the mimic. As mentioned above, plant posture 235 

affects streamlining and thus frontal area. The latter can be expressed by the effective leaf length leff 236 

(Luhar and Nepf, 2011): 237 

  <=>> = �1 − (�A�.B9CDE �⁄ )�G9CD� �⁄ (HGI� �⁄ )� <   (8) 238 

Substituting into eq. 1 and using β = 2 as proposed by Luhar and Nepf (2011) allows estimation of the 239 

drag forces for regular and irregular waves respectively, from velocity measurements: 240 

  ��JK=66=K = �����L<=>>	�    (9) 241 

with CD = 1.95 for a rigid, upright blade (Vogel, 1994). To capture negative forces under the wave 242 

trough, 	�	was replaced by 	|	| in eq. 9. The model was applied to the averaged time series for regular 243 

waves based on the first 11 fully developed waves in the record and the full time series for irregular 244 

waves by substituting u in eq. 9 with ur,max and ui,m0 obtained from the time series recorded 15 cm 245 

above the bed, respectively. This modelled time series was then processed analogous to the measured 246 

force time series to obtain Fr,model and Fm0,model respectively. The goodness-of-fit for the Luhar and Nepf 247 

(2011) model was assessed using linear regression in the averaged time series for regular, and the full 248 

time series for irregular, waves. All data pre-processing was done in L~davis (provided by FZK) and 249 

processing as well as statistical analysis was conducted in MATLAB®.  250 

 251 

3. Results 252 

Throughout all experimental conditions, the force recorded by the drag sensors with metal bars but 253 

without plastic strips was generally low (Fr < 0.4 N and Fm0 < 0.5 N). However, at low velocities the strip 254 
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mounting bars accounted for up to 19% of the measured forces for any strip arrangement at a given 255 

horizontal orbital velocity. The metal bar's influence was therefore removed from the force 256 

measurements during pre-processing. 257 

 258 

3.1. Measured drag forces 259 

Time series of forces and horizontal orbital velocities during regular and irregular wave tests showed 260 

that the forces changed direction in correspondence with the wave orbital cycle. However, forces were 261 

not necessarily in phase with the hydrodynamic loading (Figure 2b-e). No systematic response could 262 

be detected, with forces leading velocity in some cases (e.g. Figure 2b) and lagging velocity in others 263 

(e.g. Figure 2e). The phase lag may result from different bending behaviour of the mimics depending 264 

on their stiffness and the wave period. However, no video footage of the mimics was available to 265 

explore the link of these phase differences to mimic motion in detail.  266 

For all strip arrangements, the acting forces increased with increasing horizontal orbital velocity, both 267 

for regular (Figure 3a) and irregular waves (Figure 3b). In both cases, the strip arrangement with the 268 

highest volume (8 x 2 mm) yielded forces that were on average 1.9 and 2.7 times higher than forces 269 

for the arrangements with half the volume (8 x 1 mm and 4 x 2 mm, respectively). 270 

At low orbital velocities under regular waves (ur,max < 0.4 m s-1), frontal area appeared to influence drag 271 

forces, as the three arrangements with identical volume but different number of strips per 272 

arrangement (i.e. 8 x 1 mm, 4 x 2 mm and 2 x 4 mm) resulted in forces increasing with increasing 273 

number of strips per arrangement  (Figure 3a). The forces recorded with the 8 x 1 mm and 4 x 2 mm 274 

arrangements exceeded those recorded with the 2 x 4 mm arrangement by a factor of 1.2 and 2.3 275 

respectively. With increasing ur,max the difference between the 8 x 1 mm and 4 x 2 mm strip 276 

arrangement reduced and recorded forces became comparable in the velocity range 0.4 - 0.7 m s-1 277 

when the standard deviations are considered. Beyond ur,max = 0.7 m s-1, forces on the 4 x 2 mm 278 

arrangement exceeded those for the 8 x 1 mm arrangement, while values for the 2 x 4 mm 279 

arrangement increased more rapidly with increasing velocities but still remained lower than for the 280 
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other arrangements across the whole velocity range tested. Comparing the 4 x 2 mm and 8 x 2 mm 281 

arrangement for regular waves shows that material volume has an effect on drag forces, but that this 282 

effect is neither linear nor constant. At low velocities the 8 x 2 mm arrangement yielded more than 283 

three times the forces measured for the 4 x 2 mm arrangement (3.17 for ur,max = 0.2 m s-1), while this 284 

difference decreased to a factor of 2.10 for ur,max = 0.59 m s-1. 285 

The influence of frontal area on drag forces at low velocities was also visible for irregular waves (ui,m0 286 

< 0.8 m s-1). Similar to regular waves, the difference in forces measured with the 8 x 1 mm and 4 x 2 287 

mm arrangement reduced with increasing ui,m0 until they merged onto approx. one line for ui,m0 > 1 m 288 

s-1 (Figure 3b). In contrast to the regular wave tests, however, forces observed with the 2 x 4 mm 289 

arrangement remained consistently a factor of approx. 2 lower than for the other arrangements with 290 

identical volume. Doubling the volume at constant material stiffness (i.e. from the 4 x 2 mm to 8 x 2 291 

mm arrangement) led to an increase of drag forces by a factor of 2.06 - 2.81. In the same way as for 292 

regular waves, this factor decreased with increasing velocity. 293 

Across all flow velocities tested, forces under irregular waves remained below those for corresponding 294 

regular wave tests (Figure 4). This can be attributed to the different computation methods used to 295 

derive statistical values from the measured force time series; Fr refers to the maximum force in the 296 

wave cycle, while Fm0 is a statistical parameter describing the whole spectrum which includes all waves 297 

in the spectrum. 298 

3.2. Modelled drag forces 299 

Flexural rigidity (Table 1) was used to estimate the effective leaf length leff in order to apply the Luhar 300 

and Nepf (2011) model to the data. The model provided a very good fit (R² > 0.93) for the averaged 301 

force time series for most mimic arrangements in all regular wave tests (Figure 2b-e). Even in cases 302 

with deviations in the maximum and minimum forces in the wave cycle (Figure 2e), the model captured 303 

the overall shape of the force time series and also reproduced the reduced rate of change in forces 304 

during flow reversal. Comparing modelled and measured values for Fr over the whole velocity range 305 

tested showed a very good fit (Table 1), with a slight underprediction for mimics of 1 and 2 mm 306 
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thickness. Forces recorded by the 2 x 4 mm arrangement were overpredicted at high velocities (Figure 307 

4). The model indicated that forces for the 4 x 2 mm arrangement exceeded the ones for the 8 x 1 mm 308 

arrangement for ur,max > 0.47 m s-1. Comparison of the modelled relationships showed that mimic 309 

thickness, and hence stiffness, affects forces in the low velocity ranges. The thicker, i.e. stiffer, the 310 

mimic is, the higher is the velocity at which the force-velocity relationship becomes approx. linear and 311 

the steeper the slope of this linear section becomes. 312 

Similar to the pattern under regular waves, the model reproduced the time series of forces well for 313 

irregular wave tests. Scatter plots (Figure 5) show that high forces under wave crests were generally 314 

slightly underpredicted, while an overprediction of forces under wave troughs occurred in some cases 315 

(e.g. Figure 5d). Considering the Fm0 values across the whole velocity range tested, the quality of model 316 

fit remained very good (Table 1, Figure 4), but showed a stronger underprediction for the 8 x 2 mm 317 

arrangement than for the 4 x 2 mm arrangement. These findings suggest that stiffness was not the 318 

driving parameter in this case as stiffness was identical for both arrangements. The model shows forces 319 

for the 4 x 2 mm arrangement to exceed the ones for the 8 x 1 mm arrangement for ui,m0 > 1.28 m s-1 320 

and, despite the model's tendency for underprediction, this agrees well with the measured data, where 321 

such a ratio first occurred at ui,m0 > 1.26 m s-1 (Figure 3). 322 

 323 

4. Discussion 324 

In this study, vegetation mimic arrangements with different volume, stiffness and still frontal area were 325 

exposed to a wide range of wave forcing. Drag forces acting on the mimics were both measured directly 326 

and modelled using the concept of effective leaf length. The resulting model, initially developed under 327 

unidirectional flow, was applied to forces under oscillatory flow and performed well for regular as well 328 

as irregular waves. In addition, comparison of measurements and model revealed that plants within a 329 

patch may interact with each other in the cross-stream direction which can have strong implications 330 

for vegetation stability, sediment trapping and the characterisation of vegetated foreshores. 331 

 332 
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 333 

4.1. The effect of frontal area on drag forces 334 

Under a given hydrodynamic forcing, the flexural rigidity determines leff which, under unidirectional 335 

flow, has been shown to be directly related to the drag force acting on the plant or mimic (Luhar and 336 

Nepf, 2011). This study applied the concept of effective leaf length and the resulting model to forces 337 

under oscillatory flow. Overall, the model performed well for time series and statistical parameters, 338 

i.e. Fr and Fm0, under both regular and irregular waves. The slight underprediction of forces may be due 339 

to the fact that the model was originally derived for unidirectional flow. The difference is likely to be 340 

caused by additional inertia forces which apply due to acceleration under waves (Denny et al., 1998); 341 

these forces increase with increasing horizontal orbital velocity. The data reflects this increase, as the 342 

model's goodness-of-fit reduces with increasing ur,max and ui,m0 (Figure 4 and 5). However, in order to 343 

evaluate whether forces under waves are higher for the same flow velocity compared to unidirectional 344 

flow, comparative force measurements need to be conducted in the future. An additional aspect is 345 

that leff is by definition less than, or equal to, the physically deflected height as it accounts for 346 

streamlining in addition to the reduced frontal area due to bending (Luhar and Nepf, 2011). 347 

Streamlining may not apply to the mimics under waves and the use of the physically deflected height 348 

may be more appropriate in this case. At high velocities (ur,max > 0.77 m s-1), the live Elymus athericus 349 

plants were found to fold over at the base and streamline to a flat position for some time during the 350 

wave cycle (Möller et al., 2014). The similarity between Elymus athericus and the mimics in terms of 351 

their material properties suggest that their bending behaviour under the same hydrodynamic forcing 352 

may be similar as well. Furthermore, the data for regular waves suggest that mimic response changes 353 

with increasing velocities. At low (ur,max < 0.4 m s-1) velocities, mimic bending appears to be so low that 354 

all mimic arrangements remain fully upright. As a consequence, still frontal area at a constant material 355 

volume (i.e. mimic arrangements 8 x 1 mm, 4 x 2 mm and 2 x 4 mm) determines drag forces rather 356 

than flexural rigidity (Figure 3). At intermediate velocities (0.4 m s-1 < ur,max < 0.7 m s-1) different bending 357 

angles of the 8 x 1 mm and 4 x 2 mm arrangement lead to similar leff and hence comparable drag forces. 358 
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Att ur,max > 0.7 m s-1 different bending behaviour due to different mimic stiffness between all three 359 

arrangements leads to deviations in leff and hence no direct relationship between mimic properties and 360 

drag forces. To assess changes in deflected height with increasing orbital velocity and to evaluate the 361 

relationship of deflected height and leff, future work should include visual observations of the mimics' 362 

motion and bending angle. 363 

 364 

4.2. The effect of stiffness on drag forces 365 

The similar forces for the 8 x 1 mm and 4 x 2 mm arrangement with identical material volume at high 366 

velocities suggest that, in this exposure range, drag forces on vegetation depend on material volume 367 

(i.e. above ground standing biomass) rather than stiffness. This finding agrees with previous 368 

observations (Bouma et al., 2010; Paul and Amos, 2011; Penning et al., 2009), although it should be 369 

noted that these studies only covered a limited velocity range due to practical reasons. The results 370 

over the wider range of velocities presented here emphasise the fact that conclusions drawn from 371 

small datasets need to be evaluated with care and that extrapolation to other velocity ranges may not 372 

be possible (Bell, 1999). Considering the whole range of velocities tested here, material stiffness 373 

described by flexural rigidity J appears to play an important role in the force-velocity relationship 374 

across the whole velocity range as it determines the slope of this relationship (Figure 4). This 375 

observation agrees well with data obtained under unidirectional flow (Aberle and Järvelä, 2013; 376 

Callaghan et al., 2007). In regions with low wave forcing and hence low orbital velocities (i.e. a salt 377 

marsh high in the tidal frame) it may therefore be beneficial for a plant to produce thicker yet stiffer 378 

stems if this reduces the frontal area exposed to hydrodynamic forcing. Conversely, in regions with 379 

higher wave forcing (such as a pioneer salt marsh edge), vegetation viability may benefit from the 380 

presence of more flexible shoots with respect to drag forces, even if this increases the plant’s frontal 381 

area in still water. Such a gradient of stiffness with exposure to hydrodynamic forcing has been 382 

described by Rupprecht et al. (2015). They found an increase in Young's bending modulus from the low 383 
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marsh species Puccinellia maritima (737-1995 MPa) to the high marsh species Elymus athericus (1952-384 

4082 MPa). 385 

 386 

4.3. The effect of material distribution on drag forces 387 

When considering mimic arrangements with identical stiffness (i.e. 4 x 2 mm and 8 x 2 mm), an effect 388 

of material volume and frontal area on drag forces was observed (Figure 3). The fact that forces did 389 

not exactly double between the two mimic arrangements at a given velocity can potentially be 390 

attributed to the different distances between the individual model strips. The closer the strips are 391 

positioned together, the more they will influence each other through the turbulence generated at their 392 

edges (Sparboom et al., 2006) which is likely to lead to increased overall forces acting on the 393 

arrangement. This would also explain the reduced quality in model fit between the 8 x 2 mm and 4 x 2 394 

mm arrangement (Figure 4b and d) as the model was developed for individual plants, making it unable 395 

to consider interactions between structures. To capture these effects of strip interaction and thus 396 

account for more complex plant geometries, computation of the characteristic width b would need to 397 

be modified. In this experiment, the model was applied by using the strip width to calculate the 398 

buoyancy parameter B and the Cauchy number Ca, while the product of strip width and number of 399 

strips was used in eq. 9 to compute the modelled force. This approach assumes a single solid strip and 400 

does not account for the effect of complex structures with gaps between individual elements. 401 

Consequently, the model in its current form predicts exactly twice the force for the 8 x 2 mm 402 

arrangement than for the 4 x 2 mm arrangement. Unfortunately, the used mimic arrangements did 403 

not allow for a more detailed parameterisation of the effective width. Systematic tests with defined 404 

gap sizes between strips are required to close this knowledge gap in the future. 405 

The dependence of drag forces on cross-stream gap size indicates that forces acting on plants when 406 

positioned within a vegetation patch are more complex than previously suggested. Investigations of 407 

wave forces in patches of macroalgae have shown that individual specimens can reduce the forces 408 

acting on them by 'hiding' behind upstream organisms (Carrington, 1990; Eckman et al., 1994). Force 409 
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measurements on rigid and flexible structures under unidirectional flow have demonstrated that both 410 

down-stream and cross-stream distance between structures affect acting forces (Schoneboom et al., 411 

2010; Schoneboom et al., 2011), but that both distances are related to the wake flow structure of 412 

upstream elements in different array setups (offset vs. in line). The absence of upstream or 413 

downstream structures in this study suggests that neighbouring vegetation stems can be assumed to 414 

cause the observed patterns of enhanced drag forces when plants grow more closely spaced laterally. 415 

Consequently, a threshold vegetation spacing may exist below which the shading effect of upstream 416 

plants outweighs the additional forces from neighbouring stems. This threshold spacing would, 417 

however, depend upon wake evolution and therefore on vegetation diameter and complexity of shape 418 

as well as hydrodynamic forcing. Vegetation spacing is an important factor in marsh ecology, as marsh 419 

vegetation typically needs to surpass a density threshold for significant sediment accretion to occur 420 

(Bouma et al., 2009; Peralta et al., 2008). Hence we advocate further study of the effect of vegetation 421 

spacing on acting forces and sediment transport to enhance our knowledge both from a hydrodynamic 422 

as well as an ecological point of view. 423 

 424 

5. Conclusions 425 

In this study, we conducted direct force measurements on mimic arrangements representing 426 

vegetation elements of varying stiffness and material volume characteristics. All mimic arrangements 427 

were exposed to hydrodynamic forcing under regular and irregular waves, covering a wide range of 428 

conditions including high energy events. 429 

The results confirm that vegetation stiffness, rather than biomass, is the driving parameter behind the 430 

force-velocity relationship as it is stiffness that determines bending and hence effective leaf length 431 

under hydrodynamic forcing. Under low forcing, forces are distributed according to the still frontal 432 

area of the mimic arrangement; this may be due to the lack of bending under these conditions. While 433 

under increased orbital velocities, the combination of characteristic width and bending can lead to the 434 

same response for mimic arrangements with identical material volume but different still frontal area. 435 
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Moreover, the observations of different mimic arrangements suggest that plants within a patch 436 

interact with each other in the cross-stream direction. If shoots grow close enough to each other, the 437 

turbulence at their edges will affect neighbouring plants and increases the drag force acting on them 438 

even if the plants are not in direct contact with each other. 439 

The force measurements were also modelled, applying the model based on effective leaf length by 440 

Luhar and Nepf (2011) to orbital velocities. Overall, the model performed very well and was able to 441 

reproduce force time series for regular as well as irregular waves. However, it did not reproduce the 442 

force increase due to the interaction of neighbouring mimics which led to small deviations between 443 

modelled and measured data. In order to incorporate these interactions in the model and allow for its 444 

application to more complex plant shapes, visual observations alongside force measurements are now 445 

required for different mimic configurations. Such work would further develop existing models, improve 446 

characterisation of vegetated foreshores and aid better design of soft engineering interventions on 447 

low-lying sedimentary shorelines. 448 
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 460 

Figure 1: Schematic of instrument setup indicating a) the instrument location in a flume side view, b) a downstream view 461 

of the instrument location, and c) the mounting of strip arrangements on the drag sensors. At the black position a strip 462 

was attached for all arrangements. In addition, the dark shaded position was used for the 2 x 4 mm arrangement, for the 463 

4 x 2 mm arrangement the medium shaded positions were used and the 8 x 2 mm and 8 x 1 mm arrangements used all 464 

positions. 465 
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 466 
 467 

Figure 2: Time series of relative surface elevation under regular waves (H = 0.4 m, T = 4.1 s) in 2 m water depth with the 468 

grey shaded area indicating the first 11 fully developed waves used for analysis (a) and time series of averaged horizontal 469 

velocity and drag forces under the same conditions for b) the 8 x 1 mm arrangement (R² = 0.97, RMSE = 0.11, absolute 470 

maximum residual = 0.30), c) the 4 x 2 mm arrangement (R² = 0.95, RMSE = 0.11, absolute maximum residual = 0.49), d) 471 

the 2 x 4 mm arrangement (R² = 0.92, RMSE = 0.07, absolute maximum residual = 0.21), and e) 8 x 2 mm arrangement (R² 472 

= 0.96, RMSE = 0.21, absolute maximum residual =  0.68). R² gives the linear regression fit between measured and modelled 473 

force time series and RMSE is the root-mean-square error of this fit. These are illustrative examples; all other tests showed 474 

the same quality of model fit. 475 

 476 

 477 
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 478 

 479 
Figure 3: Drag forces for the different mimic arrangements in relationship to a) maximum horizontal orbital velocity ur,max 480 

for regular waves, b) horizontal orbital velocity ui,m0 for irregular waves. For regular waves values are given with ± one 481 

standard deviation. Values for mimic arrangements are corrected for the influence of the horizontal metal bar. 482 

 483 
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Figure 4: Measured drag forces and the fitted Luhar and Nepf (2011) model for the different mimic arrangements a) 8 x 1 484 

mm, b) 4 x 2 mm, c) 2 x 4 mm, and d) 8 x 2 mm in relationship to horizontal orbital velocity 15 cm above the bed for 485 

regular and irregular waves. Standard deviation for the regular wave data is omitted for clarity. 486 

 487 
Figure 5: Scatter plot of the modelled forces vs. measured forces for irregular waves (Hm0 = 0.4 m, Tp = 4.13 s) in 2 m water 488 

depth. The grey line depicts Fmodelled = a*Fmeasured with a = 1. For each dataset, a was computed using linear regression for 489 

a) the 8 x 1 mm arrangement (a = 0.85, R² = 0.94, RMSE = 0.09, absolute maximum residual = 0.54), b) the 4 x 2 mm 490 

arrangement (a = 0.80, R² = 0.91, RMSE = 0.09, absolute maximum residual = 0.88), c) the 2 x 4 mm arrangement (a = 0.96, 491 

R² = 0.86, RMSE = 0.06, absolute maximum residual = 0.65), and d) the 8 x 2 mm arrangement (a = 0.66, R² = 0.92, RMSE = 492 

0.18, absolute maximum residual = 2.35). R² gives the linear regression fit between measured and modelled force time 493 

series and RMSE is the root-mean-square error of this fit. 494 

  495 
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Table 1: Parameters of the used mimic arrangements and goodness-of-fit parameters for the Luhar and Nepf (2011) model. 496 

Flexural rigidity is given ± standard deviation. The fit parameters refer to the relationship Fmodelled = a*Fmeasured for Fr and 497 

Fm0 respectively across the whole velocity range tested, for the data shown in Figure 4. 498 

Arrangement Number of 

strips 

Strip 

thickness 

(mm) 

Still 

frontal 

area 

(cm²) 

Material 

volume 

(cm³) 

Flexural rigidity (Nm²) Fit 

parameter 

aregular/ R² 

Fit 

parameter 

airregular/ R² 

8 x 1 mm 8 1 110 11 1.36*10-3 ± 3.73*10-5 

(n = 9) 

0.88/ 0.94 0.91/ 0.99 

4 x 2 mm 4 2 55 11 8.97*10-3 ± 6.73*10-5 

(n = 10) 

0.97/ 0.96 0.91/ 0.99 

2 x 4 mm 2 4 27.5 11 6.57*10-2 ± 3.21*10-3 

(n = 10) 

1.21/ 0.99 1.12/ 0.98 

8 x 2 mm 8 2 110 22 8.97*10-3 ± 6.73*10-5 

(n = 10) 

0.82/ 0.96 0.77/ 0.99 

  499 
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