69 research outputs found

    Ancient Plant Genomics in Archaeology, Herbaria, and the Environment : Annual Review of Plant Biology

    Get PDF
    The ancient DNA revolution of the past 35 years has driven an explosion in the breadth, nuance, and diversity of questions that are approachable using ancient biomolecules, and plant research has been a constant, indispensable facet of these developments. Using archaeological, paleontological, and herbarium plant tissues, researchers have probed plant domestication and dispersal, plant evolution and ecology, paleoenvironmental composition and dynamics, and other topics across related disciplines. Here, we review the development of the ancient DNA discipline and the role of plant research in its progress and refinement. We summarize our understanding of long-term plant DNA preservation and the characteristics of degraded DNA. In addition, we discuss challenges in ancient DNA recovery and analysis and the laboratory and bioinformatic strategies used to mitigate them. Finally, we review recent applications of ancient plant genomic research

    Metagenomic analysis of historical herbarium specimens reveals a postmortem microbial community

    Get PDF
    Advances in DNA extraction and next-generation sequencing have made a vast number of historical herbarium specimens available for genomic investigation. These specimens contain not only genomic information from the individual plants themselves, but also from associated microorganisms such as bacteria and fungi. These microorganisms may have colonized the living plant (e.g., pathogens or host-associated commensal taxa) or may result from postmortem colonization that may include decomposition processes or contamination during sample handling. Here we characterize the metagenomic profile from shotgun sequencing data from herbarium specimens of two widespread plant species (Ambrosia artemisiifolia and Arabidopsis thaliana) collected up to 180 years ago. We used blast searching in combination with megan and were able to infer the metagenomic community even from the oldest herbarium sample. Through comparison with contemporary plant collections, we identify three microbial species that are nearly exclusive to herbarium specimens, including the fungus Alternaria alternata, which can comprise up to 7% of the total sequencing reads. This species probably colonizes the herbarium specimens during preparation for mounting or during storage. By removing the probable contaminating taxa, we observe a temporal shift in the metagenomic composition of the invasive weed Am. artemisiifolia. Our findings demonstrate that it is generally possible to use herbarium specimens for metagenomic analyses, but that the results should be treated with caution, as some of the identified species may be herbarium contaminants rather than representing the natural metagenomic community of the host plant

    Ancient reindeer mitogenomes reveal island-hopping colonisation of the Arctic archipelagos

    Get PDF
    Climate warming at the end of the last glacial period had profound effects on the distribution of cold-adapted species. As their range shifted towards northern latitudes, they were able to colonise previously glaciated areas, including remote Arctic islands. However, there is still uncertainty about the routes and timing of colonisation. At the end of the last ice age, reindeer/caribou (Rangifer tarandus) expanded to the Holarctic region and colonised the archipelagos of Svalbard and Franz Josef Land. Earlier studies have proposed two possible colonisation routes, either from the Eurasian mainland or from Canada via Greenland. Here, we used 174 ancient, historical and modern mitogenomes to reconstruct the phylogeny of reindeer across its whole range and to infer the colonisation route of the Arctic islands. Our data shows a close affinity among Svalbard, Franz Josef Land and Novaya Zemlya reindeer. We also found tentative evidence for positive selection in the mitochondrial gene ND4, which is possibly associated with increased heat production. Our results thus support a colonisation of the Eurasian Arctic archipelagos from the Eurasian mainland and provide some insights into the evolutionary history and adaptation of the species to its High Arctic habitat

    Uncovering the genomic basis of an extraordinary plant invasion

    Get PDF
    Invasive species are a key driver of the global biodiversity crisis, but the drivers of invasiveness, including the role of pathogens, remain debated. We investigated the genomic basis of invasiveness in Ambrosia artemisiifolia (common ragweed), introduced to Europe in the late 19th century, by resequencing 655 ragweed genomes, including 308 herbarium specimens collected up to 190 years ago. In invasive European populations, we found selection signatures in defense genes and lower prevalence of disease-inducing plant pathogens. Together with temporal changes in population structure associated with introgression from closely related Ambrosia species, escape from specific microbial enemies likely favored the plant's remarkable success as an invasive species.Peer reviewe

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.info:eu-repo/semantics/publishedVersio

    Travel Tales of a Worldwide Weed: Genomic Signatures of Plantago major L. Reveal Distinct Genotypic Groups With Links to Colonial Trade Routes

    Get PDF
    Retracing pathways of historical species introductions is fundamental to understanding the factors involved in the successful colonization and spread, centuries after a species’ establishment in an introduced range. Numerous plants have been introduced to regions outside their native ranges both intentionally and accidentally by European voyagers and early colonists making transoceanic journeys; however, records are scarce to document this. We use genotyping-by-sequencing and genotype-likelihood methods on the selfing, global weed, Plantago major, collected from 50 populations worldwide to investigate how patterns of genomic diversity are distributed among populations of this global weed. Although genomic differentiation among populations is found to be low, we identify six unique genotype groups showing very little sign of admixture and low degree of outcrossing among them. We show that genotype groups are latitudinally restricted, and that more than one successful genotype colonized and spread into the introduced ranges. With the exception of New Zealand, only one genotype group is present in the Southern Hemisphere. Three of the most prevalent genotypes present in the native Eurasian range gave rise to introduced populations in the Americas, Africa, Australia, and New Zealand, which could lend support to the hypothesis that P. major was unknowlingly dispersed by early European colonists. Dispersal of multiple successful genotypes is a likely reason for success. Genomic signatures and phylogeographic methods can provide new perspectives on the drivers behind the historic introductions and the successful colonization of introduced species, contributing to our understanding of the role of genomic variation for successful establishment of introduced taxa.publishedVersio

    Bieker, Vanessa C.

    No full text

    Contrasting genomic consequences of anthropogenic reintroduction and natural recolonization in high‐arctic wild reindeer

    Get PDF
    Abstract Anthropogenic reintroduction can supplement natural recolonization in reestablishing a species' distribution and abundance. However, both reintroductions and recolonizations can give rise to founder effects that reduce genetic diversity and increase inbreeding, potentially causing the accumulation of genetic load and reduced fitness. Most current populations of the endemic high‐arctic Svalbard reindeer (Rangifer tarandus platyrhynchus) originate from recent reintroductions or recolonizations following regional extirpations due to past overharvesting. We investigated and compared the genomic consequences of these two paths to reestablishment using whole‐genome shotgun sequencing of 100 Svalbard reindeer across their range. We found little admixture between reintroduced and natural populations. Two reintroduced populations, each founded by 12 individuals around four decades (i.e. 8 reindeer generations) ago, formed two distinct genetic clusters. Compared to the source population, these populations showed only small decreases in genome‐wide heterozygosity and increases in inbreeding and lengths of runs of homozygosity. In contrast, the two naturally recolonized populations without admixture possessed much lower heterozygosity, higher inbreeding and longer runs of homozygosity, possibly caused by serial population founder effects and/or fewer or more genetically related founders than in the reintroduction events. Naturally recolonized populations can thus be more vulnerable to the accumulation of genetic load than reintroduced populations. This suggests that in some organisms even small‐scale reintroduction programs based on genetically diverse source populations can be more effective than natural recolonization in establishing genetically diverse populations. These findings warrant particular attention in the conservation and management of populations and species threatened by habitat fragmentation and loss

    Spatial patterns of phylogenetic and species diversity of Fennoscandian vascular plants in protected areas

    No full text
    <p>Protected areas are one of the main strategic means for conserving biodiversity. Yet, the design of protected areas usually neglects phylogenetic diversity, an important diversity measure. In this paper, we assess the phylogenetic diversity and species richness of vascular plants in Fennoscandian protected areas. We evaluate how much species richness and phylogenetic diversity is found within and outside protected areas, and the differences in diversity between different categories of protected areas. We also assess the differences in the diversity-area relationship of the different protected area categories in terms of both species richness and phylogenetic diversity. We build a multi-locus phylogeny of 1,519 native vascular plants of Norway, Sweden, and Finland. We estimate the phylogenetic diversity and species richness by combining the phylogeny with publicly available occurrence data and the currently protected area system of Fennoscandia. Our results indicate that protected areas in Fennoscandia hold more diversity when larger, and that phylogenetic diversity increases faster with area than species richness. We found evidence for more diversity outside of protected areas of the different countries of Fennoscandia than inside of protected areas, but no evidence for diversity differences between areas with different protection status. Hence, our results indicate that the current protected area system in Fennoscandia is no more effective in conserving phylogenetic diversity and species richness of vascular plants than a random selection of localities. Our results also indicate that planning conservation strategies around phylogenetic diversity, rather than species richness, might be more effective in protecting vascular plant diversity.</p><p>Funding provided by: Peder Sather Center for Advanced Study<br>Crossref Funder Registry ID: http://dx.doi.org/10.13039/100012388<br>Award Number: </p><p>Funding provided by: Norges Teknisk-Naturvitenskapelige Universitet<br>Crossref Funder Registry ID: http://dx.doi.org/10.13039/100009123<br>Award Number: </p&gt
    • 

    corecore