221 research outputs found

    Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2

    Get PDF
    The temperature and photoexcitation density dependences of the electron transport dynamics in electrolytefilled mesoporous TiO2 nanoparticle films were investigated by transient photocurrent measurements. The thermal activation energy of the diffusion coefficient of photogenerated electrons ranged from 0.19–0.27 eV, depending on the specific sample studied. The diffusion coefficient also depends strongly on the photoexcitation density; however, the activation energy has little, if any, dependence on the photoexcitation density. The light intensity dependence can be used to infer temperature-independent dispersion parameters in the range 0.3–0.5. These results are inconsistent with the widely used transport model that assumes multiple trapping of electrons in an exponential conduction-band tail. We can also exclude a model allowing for widening of a band tail with increased temperature. Our results suggest that structural, not energetic, disorder limits electron transport in mesoporous TiO2. The analogy between this material and others in which charge transport is limited by structural disorder is discussed

    Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells

    Get PDF
    © 2018 The Royal Society of Chemistry This is an Open Access article, distributed under the terms of the Creative Commons Attribution Unported 3.0 license (CC BY 3.0), https://creativecommons.org/licenses/by/3.0/ which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly citedIn a dye-sensitized solar cell (DSSC) the amount of adsorbed dye on the photoanode surface is a key factor that must be maximized in order to obtain enhanced DSSC performance. In this study 3D ZnO nanostructures, named brush-like, are demonstrated as alternative photoanodes. In these structures, long ZnO nanorods are covered with a metal-organic precursor, known as a layered-hydroxide zinc salt (LHZS), which is subsequently converted to crystalline ZnO using two-step annealing. The LHZS is able to easily grow on any surface, such as the ZnO nanorod surface, without needing the assistance of a seed-layer. Brush-like structures synthesized using different citrate concentrations in the growth solutions and different annealing conditions are characterized and tested as DSSC photoanodes. The best-performing structure reported in this study was obtained using the highest citrate concentration (1.808 mM) and the lowest temperature annealing condition in an oxidative environment. Conversion efficiency as high as 1.95% was obtained when these brush-like structures were employed as DSSC photoanodes. These results are extremely promising for the implementation of these innovative structures in enhanced DSSCs, as well as in other applications that require the maximization of surface area exposed by ZnO or similar semiconductors, such as gas- or bio-sensing or photocatalysis.Peer reviewedFinal Published versio

    Temperature Dependence of the Electron Diffusion Coefficient in Electrolyte-Filled TiO2 Nanoparticle Films: Evidence Against Multiple Trapping in Exponential Conduction-Band Tails

    Get PDF
    The temperature and photoexcitation density dependences of the electron transport dynamics in electrolytefilled mesoporous TiO2 nanoparticle films were investigated by transient photocurrent measurements. The thermal activation energy of the diffusion coefficient of photogenerated electrons ranged from 0.19–0.27 eV, depending on the specific sample studied. The diffusion coefficient also depends strongly on the photoexcitation density; however, the activation energy has little, if any, dependence on the photoexcitation density. The light intensity dependence can be used to infer temperature-independent dispersion parameters in the range 0.3–0.5. These results are inconsistent with the widely used transport model that assumes multiple trapping of electrons in an exponential conduction-band tail. We can also exclude a model allowing for widening of a band tail with increased temperature. Our results suggest that structural, not energetic, disorder limits electron transport in mesoporous TiO2. The analogy between this material and others in which charge transport is limited by structural disorder is discussed

    An interlaboratory comparison on the characterization of a sub-micrometer polydisperse particle dispersion

    Get PDF
    The measurement of polydisperse protein aggregates and particles in biotherapeutics remains a challenge, especially for particles with diameters of ≈ 1 µm and below (sub-micrometer). This paper describes an interlaboratory comparison with the goal of assessing the measurement variability for the characterization of a sub-micrometer polydisperse particle dispersion composed of five sub-populations of poly(methyl methacrylate) (PMMA) and silica beads. The study included 20 participating laboratories from industry, academia, and government, and a variety of state-of-the-art particle-counting instruments. The received datasets were organized by instrument class to enable comparison of intralaboratory and interlaboratory performance. The main findings included high variability between datasets from different laboratories, with coefficients of variation from 13 % to 189 %. Intralaboratory variability was, on average, 37 % of the interlaboratory variability for an instrument class and particle sub-population. Drop-offs at either end of the size range and poor agreement on maximum counts of particle sub-populations were noted. The mean distributions from an instrument class, however, showed the size-coverage range for that class. The study shows that a poly-disperse sample can be used to assess performance capabilities of an instrument set-up (including hardware, software, and user settings) and provides guidance for the development of polydisperse reference materials.Drug Delivery Technolog
    • …
    corecore