11 research outputs found

    The \u3ci\u3ePseudomonas syringae\u3c/i\u3e Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants

    Get PDF
    The plant pathogenic bacterium Pseudomonas syringae is divided into pathovars differing in host specificity, with P. syringae pv. syringae (Psy) and P. syringae pv. tomato (Pto) representing particularly divergent pathovars. P. syringae hrp/hrc genes encode a type III protein secretion system that appears to translocate Avr and Hop effector proteins into plant cells. DNA sequence analysis of the hrp/hrc regions in Psy 61, Psy B728a, and Pto DC3000 has revealed a Hrp pathogenicity island (Pai) with a tripartite mosaic structure. The hrp/hrc gene cluster is conserved in all three strains and is flanked by a unique exchangeable effector locus (EEL) and a conserved effector locus (CEL). The EELs begin 3 nt downstream of the stop codon of hrpK and end, after 2.5–7.3 kb of dissimilar intervening DNA with tRNALeu–queA–tgt sequences that are also found in Pseudomonas aeruginosa but without linkage to any Hrp Pai sequences. The EELs encode diverse putative effectors, including HopPsyA (HrmA) in Psy 61 and proteins similar to AvrPphE and the AvrByAvrCyAvrPphC and AvrBsTyAvrRxvyYopJ protein families in Psy B728a. The EELs also contain mobile genetic element sequences and have a G 1 C content significantly lower than the rest of the Hrp Pai or the P. syringae genome. The CEL carries at least seven ORFs that are conserved between Psy B728a and Pto DC3000. Deletion of the Pto DC3000 EEL slightly reduces bacterial growth in tomato, whereas deletion of a large portion of the CEL strongly reduces growth and abolishes pathogenicity in tomato

    \u3ci\u3ePseudomonas syringae\u3c/i\u3e Hrp type III secretion system and effector proteins

    Get PDF
    Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrpyhrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrpdependent outer protein (hop) genes encode effector proteins. The hrpyhrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNALeu gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens

    \u3ci\u3ePseudomonas syringae\u3c/i\u3e Hrp type III secretion system and effector proteins

    Get PDF
    Pseudomonas syringae is a member of an important group of Gram-negative bacterial pathogens of plants and animals that depend on a type III secretion system to inject virulence effector proteins into host cells. In P. syringae, hrpyhrc genes encode the Hrp (type III secretion) system, and avirulence (avr) and Hrpdependent outer protein (hop) genes encode effector proteins. The hrpyhrc genes of P. syringae pv syringae 61, P. syringae pv syringae B728a, and P. syringae pv tomato DC3000 are flanked by an exchangeable effector locus and a conserved effector locus in a tripartite mosaic Hrp pathogenicity island (Pai) that is linked to a tRNALeu gene found also in Pseudomonas aeruginosa but without linkage to Hrp system genes. Cosmid pHIR11 carries a portion of the strain 61 Hrp pathogenicity island that is sufficient to direct Escherichia coli and Pseudomonas fluorescens to inject HopPsyA into tobacco cells, thereby eliciting a hypersensitive response normally triggered only by plant pathogens. Large deletions in strain DC3000 revealed that the conserved effector locus is essential for pathogenicity but the exchangeable effector locus has only a minor role in growth in tomato. P. syringae secretes HopPsyA and AvrPto in culture in a Hrp-dependent manner at pH and temperature conditions associated with pathogenesis. AvrPto is also secreted by Yersinia enterocolitica. The secretion of AvrPto depends on the first 15 codons, which are also sufficient to direct the secretion of an Npt reporter from Y. enterocolitica, indicating that a universal targeting signal is recognized by the type III secretion systems of both plant and animal pathogens

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Título en español

    No full text
    Forty-three sugarcane clones were tested in the greenhouse for resistance to smut, Ustilago scitaminea Sydow, between December 1983 and January 1985. We inoculated forty pieces of seed cane per clone (one bud/seedpiece) by submerging them for 20 minutes in an aqueous suspension of teliospores (5 x 106/ml). Inoculated seedpieces were incubated overnight, then planted in 20-cm diameter metal pots. Incidence of stool and stalk infections were followed. Stool infection increased after ratooning. Nine clones were smut resistant and three were tolerant at planting and at the first ratoon crop. Three clones, PR 70-2085, PR 77-1040, and PR 78-3005, did not show disease symptoms or smut whips during the experiment.Desde diciembre de 1983 a enero de 1985 se probaron en invernadero 43 clones de caña de azúcar para resistencia al carbón, Ustilago scitaminea Sydow. Se inocularon 40 trozos de caña (semilla) por variedad (una yema/ semilla) sumergiéndolas por 20 min. en una suspensión acuosa de teliósporas (5 x 106/ml). La semilla inoculada se incubó durante la noche, después se sembró en cubos de metal de 20 cm. de diámetro. Se observó periódicamente la incidencia de la infección en cepas y tallos durante el desarrollo de la epifitotia. La infección en las cepas aumentó cuando la plantilla se dejó retoñar. Nueve clones mostraron resistencia al carbón y tres fueron tolerantes en la siembra de plantilla y en el retoño. Tres clones, PR 70-2085, PR 77-1040 y PR 78-3005, no mostraron los síntomas del carbón o brotes en forma de látigo en el transcurso del experimento

    Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol Microbiol 49

    No full text
    Summary Pseudomonas syringae pv. tomato DC3000 is a pathogen of tomato and Arabidopsis that injects virulence effector proteins into host cells via a type III secretion system (TTSS). TTSS-deficient mutants have a Hrp D hopPtoM :: nptII mutant was constructed and found to grow like the wild type in tomato but to be strongly reduced in its production of necrotic lesion symptoms. HopPtoM expression in DC3000 was activated by the HrpL alternative sigma factor, and the protein was secreted by the Hrp TTSS in culture and translocated into Arabidopsis cells by the Hrp TTSS during infection. Secretion and translocation were dependent on ShcM, which was neither secreted nor translocated but, like typical TTSS chaperones, could be shown to interact with HopPtoM, its cognate effector, in yeast twohybrid experiments. Thus, HopPtoM is a type III effector that, among known plant pathogen effectors, is unusual in making a major contribution to the elicitation of lesion symptoms but not growth in host tomato leaves

    The Hemileia vastatrix effector HvEC‐016 suppresses bacterial blight symptoms in coffee genotypes with the SH1 rust resistance gene

    Get PDF
    A number of genes that confer resistance to coffee leaf rust (SH1–SH9) have been identified within the genus Coffea, but despite many years of research on this pathosystem, the complementary avirulence genes of Hemileia vastatrix have not been reported. After identification of H. vastatrix effector candidate genes (HvECs) expressed at different stages of its lifecycle, we established an assay to characterize HvEC proteins by delivering them into coffee cells via the type‐three secretion system (T3SS) of Pseudomonas syringae pv. Garcae (Psgc). Employing a calmodulin‐dependent adenylate cyclase assay, we demonstrate thatPsgc recognizes a heterologous P. syringae T3SS secretion signal which enables us to translocate HvECs into the cytoplasm of coffee cells. Using this Psgc‐adapted effector detector vector (EDV) system, we found that HvEC‐016 suppresses the growth of Psgcon coffee genotypes with the SH1 resistance gene. Suppression of bacterial blight symptoms in SH1 plants was associated with reduced bacterial multiplication. By contrast, HvEC‐016 enhanced bacterial multiplication in SH1‐lacking plants. Our findings suggest that HvEC‐016 may be recognized by the plant immune system in a SH1‐dependent manner. Thus, our experimental approach is an effective tool for the characterization of effector/avirulence proteins of this important pathogen

    Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity

    Get PDF
    Oomycete pathogens cause diverse plant diseases. To successfully colonize their hosts, they deliver a suite of effector proteins that can attenuate plant defenses. In the oomycete downy mildews, effectors carry a signal peptide and an RxLR motif. Hyaloperonospora arabidopsidis (Hpa) causes downy mildew on the model plant Arabidopsis thaliana (Arabidopsis). We investigated if candidate effectors predicted in the genome sequence of Hpa isolate Emoy2 (HaRxLs) were able to manipulate host defenses in different Arabidopsis accessions. We developed a rapid and sensitive screening method to test HaRxLs by delivering them via the bacterial type-three secretion system (TTSS) of Pseudomonas syringae pv tomato DC3000-LUX (Pst-LUX) and assessing changes in Pst-LUX growth in planta on 12 Arabidopsis accessions. The majority (~70%) of the 64 candidates tested positively contributed to Pst-LUX growth on more than one accession indicating that Hpa virulence likely involves multiple effectors with weak accession-specific effects. Further screening with a Pst mutant (ΔCEL) showed that HaRxLs that allow enhanced Pst-LUX growth usually suppress callose deposition, a hallmark of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI). We found that HaRxLs are rarely strong avirulence determinants. Although some decreased Pst-LUX growth in particular accessions, none activated macroscopic cell death. Fewer HaRxLs conferred enhanced Pst growth on turnip, a non-host for Hpa, while several reduced it, consistent with the idea that turnip's non-host resistance against Hpa could involve a combination of recognized HaRxLs and ineffective HaRxLs. We verified our results by constitutively expressing in Arabidopsis a sub-set of HaRxLs. Several transgenic lines showed increased susceptibility to Hpa and attenuation of Arabidopsis PTI responses, confirming the HaRxLs' role in Hpa virulence. This study shows TTSS screening system provides a useful tool to test whether candidate effectors from eukaryotic pathogens can suppress/trigger plant defense mechanisms and to rank their effectiveness prior to subsequent mechanistic investigation
    corecore