65 research outputs found

    Ultraviolet Imaging with Low Cost Smartphone Sensors: Development and Application of a Raspberry Pi-Based UV Camera

    Get PDF
    Here, we report, for what we believe to be the first time, on the modification of a low cost sensor, designed for the smartphone camera market, to develop an ultraviolet (UV) camera system. This was achieved via adaptation of Raspberry Pi cameras, which are based on back-illuminated complementary metal-oxide semiconductor (CMOS) sensors, and we demonstrated the utility of these devices for applications at wavelengths as low as 310 nm, by remotely sensing power station smokestack emissions in this spectral region. Given the very low cost of these units, ≈ USD 25, they are suitable for widespread proliferation in a variety of UV imaging applications, e.g., in atmospheric science, volcanology, forensics and surface smoothness measurements

    Impact of Salmonid alphavirus infection in diploid and triploid Atlantic salmon (Salmo salar L.) fry

    Get PDF
    With increasing interest in the use of triploid salmon in commercial aquaculture, gaining an understanding of how economically important pathogens affect triploid stocks is important. To compare the susceptibility of diploid and triploid Atlantic salmon (Salmo salar L.) to viral pathogens, fry were experimentally infected with Salmonid alphavirus sub-type 1 (SAV1), the aetiological agent of pancreas disease (PD) affecting Atlantic salmon aquaculture in Europe. Three groups of fry were exposed to the virus via different routes of infection: intraperitoneal injection (IP), bath immersion, or cohabitation (co-hab) and untreated fry were used as a control group. Mortalities commenced in the co-hab challenged diploid and triploid fish from 11 days post infection (dpi), and the experiment was terminated at 17 dpi. Both diploid and triploid IP challenged groups had similar levels of cumulative mortality at the end of the experimental period (41.1 % and 38.9 % respectively), and these were significantly higher (p < 0.01) than for the other challenge routes. A TaqMan-based quantitative PCR was used to assess SAV load in the heart, a main target organ of the virus, and also liver, which does not normally display any pathological changes during clinical infections, but exhibited severe degenerative lesions in the present study. The median viral RNA copy number was higher in diploid fish compared to triploid fish in both the heart and the liver of all three challenged groups. However, a significant statistical difference (p < 0.05) was only apparent in the liver of the co-hab groups. Diploid fry also displayed significantly higher levels of pancreatic and myocardial degeneration than triploids. This study showed that both diploid and triploid fry are susceptible to experimental SAV1 infection. The lower virus load seen in the triploids compared to the diploids may possibly be related to differences in cell metabolism between the two groups, however, further investigation is necessary to confirm this and also to assess the outcome of PD outbreaks in other developmental stages of the fish when maintained in commercial production systems

    Troponin in acute chest pain to risk stratify and guide effective use of computed tomography coronary angiography (TARGET-CTCA): a randomised controlled trial

    Get PDF
    Background The majority of patients with suspected acute coronary syndrome presenting to the emergency department will be discharged once myocardial infarction has been ruled out, although a proportion will have unrecognised coronary artery disease. In this setting, high-sensitivity cardiac troponin identifies those at increased risk of future cardiac events. In patients with intermediate cardiac troponin concentrations in whom myocardial infarction has been ruled out, this trial aims to investigate whether outpatient computed tomography coronary angiography (CTCA) reduces subsequent myocardial infarction or cardiac death. Methods TARGET-CTCA is a multicentre prospective randomised open label with blinded endpoint parallel group event driven trial. After myocardial infarction and clear alternative diagnoses have been ruled out, participants with intermediate cardiac troponin concentrations (5 ng/L to 99th centile upper reference limit) will be randomised 1:1 to outpatient CTCA plus standard of care or standard of care alone. The primary endpoint is myocardial infarction or cardiac death. Secondary endpoints include clinical, patient-centred, process and cost-effectiveness. Recruitment of 2270 patients will give 90% power with a two-sided P value of 0.05 to detect a 40% relative risk reduction in the primary endpoint. Follow-up will continue until 97 primary outcome events have been accrued in the standard care arm with an estimated median follow-up of 36 months. Discussion This randomised controlled trial will determine whether high-sensitivity cardiac troponin-guided CTCA can improve outcomes and reduce subsequent major adverse cardiac events in patients presenting to the emergency department who do not have myocardial infarction

    Obesity, Ethnicity, and Risk of Critical Care, Mechanical Ventilation, and Mortality in Patients Admitted to Hospital with COVID-19: Analysis of the ISARIC CCP-UK Cohort

    Get PDF

    A nearby super-luminous supernova with a long pre-maximum & "plateau" and strong C II features

    Get PDF
    Context. Super-luminous supernovae (SLSNe) are rare events defined as being significantly more luminous than normal terminal stellar explosions. The source of the additional power needed to achieve such luminosities is still unclear. Discoveries in the local Universe (i.e. z < 0.1) are scarce, but afford dense multi-wavelength observations. Additional low-redshift objects are therefore extremely valuable. Aims. We present early-time observations of the type I SLSN ASASSN-18km/SN 2018bsz. These data are used to characterise the event and compare to literature SLSNe and spectral models. Host galaxy properties are also analysed. Methods. Optical and near-IR photometry and spectroscopy were analysed. Early-time ATLAS photometry was used to constrain the rising light curve. We identified a number of spectral features in optical-wavelength spectra and track their time evolution. Finally, we used archival host galaxy photometry together with H II region spectra to constrain the host environment. Results. ASASSN-18km/SN 2018bsz is found to be a type I SLSN in a galaxy at a redshift of 0.0267 (111 Mpc), making it the lowest-redshift event discovered to date. Strong C II lines are identified in the spectra. Spectral models produced by exploding a Wolf-Rayet progenitor and injecting a magnetar power source are shown to be qualitatively similar to ASASSN-18km/SN 2018bsz, contrary to most SLSNe-I that display weak or non-existent C II lines. ASASSN-18km/SN 2018bsz displays a long, slowly rising, red “plateau” of >26 days, before a steeper, faster rise to maximum. The host has an absolute magnitude of –19.8 mag (r), a mass of M⋆ = 1.5−0.33+0.08 × 109 M⊙, and a star formation rate of = 0.50−0.19+2.22 M⊙ yr −1. A nearby H II region has an oxygen abundance (O3N2) of 8.31 ± 0.01 dex

    Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses

    Get PDF
    To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1–11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≄3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    A predictive model for the spectral bioalbedo of snow

    Get PDF
    We present the first physical model for the spectral ‘bioalbedo’ of snow, which predicts the spectral reflectance of snow packs contaminated with variable concentrations of red snow algae with varying diameters and pigment concentrations, and then estimates the effect of the algae on snow melt. The bio-optical model estimates the absorption coefficient of individual cells, a radiative transfer scheme calculates the spectral reflectance of snow contaminated with algal cells, which is then convolved with incoming spectral irradiance to provide albedo. Albedo is then used to drive a point-surface energy balance model to calculate snow pack melt rate. The model is used to investigate the sensitivity of snow to algal biomass and pigmentation, including subsurface algal blooms. The model is then used to recreate real spectral albedo data from the High Sierra (California, USA) and broadband albedo data Mittivakkat Gletscher (SE Greenland). Finally, spectral ‘signatures’ are identified that could be used to identify biology in snow and ice from remotely sensed spectral reflectance data. Our simulations indicate that algal blooms can influence snowpack albedo and melt rate, but also highlight that “indirect” feedbacks related to their presence are a key uncertainty that must be investigated
    • 

    corecore