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Abstract. This chapter summarises current theoretical concepts and methods to deter-

mine the gas temperature structure in protoplanetary disks by balancing all relevant

heating and cooling rates. The processes considered are non-LTE line heating/cooling

based on the escape probability method, photo-ionisation heating and recombination

cooling, free-free heating/cooling, dust thermal accommodation and high-energy heat-

ing processes such as X-ray and cosmic ray heating, dust photoelectric and PAH heating,

a number of particular follow-up heating processes starting with the UV excitation of H2,

and the release of binding energy in exothermal reactions. The resulting thermal structure

of protoplanetary disks is described and discussed.

1 Introduction

The temperature of the gas in protoplanetary disks is important for its chemical composition, the

production of emission lines connected to the observability of the gas phase, and the gas temperature

is essential to predict the pressure structure in disks which determines the vertical stratification and

shape of the disk. Therefore, the study of heating and cooling processes is an integral part of disk

modelling, one of the four fundamental ingredients for astrophysical modelling, besides radiative

transfer, chemistry, and (magneto-)hydrodynamics.

1.1 Internal energy, thermal stability, and cooling timescale

In order to determine the temperature of the gas, we consider the first law of thermodynamics

d(ρe)
dt

= −p
dV
dt

+
∑

i

ρΓi −
∑

k

ρΛk , (1)

where e [erg/cm3] is the internal energy, p [erg/cm3] the gas pressure, V = 1/ρ [cm3/g] the specific

volume, ρ [g/cm3] the mass density, and Γi (“gain”) and Λk (“loss”) are the various heating and

cooling rates per volume [erg/cm3/s].

The −pdV work is usually not important in disks, because there is no expansion or contraction

of the gas in stable Keplerian orbits. However, conditions are different for e.g. the accretion columns

(usually not covered by disk models), or in case of spiral waves in gravitationally unstable disks (Ilee
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et al. 2011). Spiral waves cause moderate shock waves which again and again compress and mix the

gas. In-between the shock compressions, the gas will re-expand.

In order to assess the importance of the −pdV work we can compare the cooling relaxation

timescale τcool with the dynamical timescale τdyn, given e.g. by the evolutionary timescale in case of

a stable 2D disk in Keplerian rotation, or by the orbital timescale in case of a strongly time-dependent

situation like a disk with spiral waves. In most cases, heating/cooling will be rapid and we will find

τcool � τdyn, so the −pdV work can be neglected, and Eq. (1) simplifies to

de
dt

= Q =
∑

i

Γi −
∑

k

Λk = 0 , (2)

which states the condition of thermal energy equilibrium. Studying small deviations from that equi-

librium, e = e0 + δe with Q(e0)=0 and small δe, we find de/dt = d(δe)/dt = Q(e) ≈ Q(e0) +
∂Q
∂e

∣∣∣
e0
δe,

thus d ln(δe)/dt = ∂Q
∂e

∣∣∣
e0
= const, and the cooling timescale can be identified as τcool = −1

/
∂Q
∂e

∣∣∣
e0
, or

τcool = − ∂e
∂Tg

∣∣∣∣∣∣
Tg,0

/
∂Q
∂Tg

∣∣∣∣∣∣
Tg,0

, (3)

where Tg is the gas temperature and Tg,0 the gas temperature in thermal balance. While deriving

Eq. (3) we have selected Tg and V as state variables to express e = e(Tg,V) and Q = Q(Tg,V), and

considered an isochoric process δV = 0, so there is no −pdV work. Note that Eq. (2), in principle,

may have several temperature solutions Tg,0 (“thermal bifurcations”). Since ∂e
∂Tg

∣∣∣
Tg,0

is always positive,

thermal stability requires ∂Q
∂Tg

∣∣∣
Tg,0
< 0.

1.2 The pools of energy

Before we start evaluating the internal energy e and the net heating/cooling rate Q, we first have to

agree on the thermodynamical concept and the definition of the internal energy (see, e.g. Rybicki &

Lightman 1979; Shu 1992). In astrophysics, there are two competing approaches, see Fig. 1. The first

LTE non-LTE

e = 3
2
n kTg + Erot + Evib + Eion − Ediss + ... e = 3

2
n kTg

Figure 1. Two approaches for what to include in the internal energy e, indicated by the light blue boxes. Follow-
ing the l.h.s. LTE approach, e contains all possible ways to store energy in a gas, whereas on the r.h.s. (non-LTE

approach) e is simply given by the thermal kinetic energy of the gas particles only. The red arrows visualise en-

ergy fluxes considered to calculate the net heating/cooling rate Q. In contrast, the grey arrows visualise processes

that are not included in the computation of Q.
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approach (called “LTE”) is mainly used by the stellar interior and stellar atmosphere communities,

studying dense gases. Here, the definition of the internal energy comprises all possible ways to store

energy in the gas (and dust), including ionisation potentials, chemical binding energies, etc.. Internal

processes (mostly of collisional character, grey arrows on the l.h.s.) are assumed to be fast, redis-

tributing the available energy quickly and evenly among all degrees of freedom. The computation of

Q is then based on the energy fluxes that connect the included pools of energy to the outside world,

i.e. the red fluxes across the boundaries of the light blue box in Fig. 1.

The second approach (called “non-LTE”) is mainly used by the interstellar community studying

the energetics of rarefied gases, e.g. under the influence of UV and X-ray radiation fields. Here, the

internal energy is simply given by the thermal kinetic energy contained in the 3 translational degrees

of freedom of the gas particles. All other forms of energy, like ionisation and dissociation, even

rotational, vibrational and electronic excitation, are not expected to be populated thermally anyway

(sometimes except for the the rotational degrees of H2). The main task then is to compute how these

external pools of energy couple to the thermal energy, i.e., again, to calculate the red energy fluxes

across the boundaries of the light blue box.

We will follow the non-LTE approach in the remainder of this lecture, but for introduction, a few

quite general results of the LTE approach shall be discussed first.

1.3 Radiative heating/cooling in the LTE case

In local thermodynamical equilibrium (LTE), the heating/cooling rate is entirely radiative (the outside

world are photons as argued above). Assuming LTE, Kirchhoff’s law applies εν = κ
abs
ν Bν(T ), and

balancing the gains and losses of photon energy results in

Q =

∫∫
κabsν Iν(
n) dΩ dν − 4π

∫
εν dν = 4π

∫
κabsν

(
Jν − Bν(T )

)
dν , (4)

where κabsν [1/cm] is the gas absorption coefficient at frequency ν [Hz], Bν(T ) [erg/s/cm2/Hz/sr] is the
Planck function, and εν [erg/s/cm

3/Hz/sr] is the gas emission coefficient. Iν(
n) [erg/s/cm2/Hz/sr] is
the spectral intensity in direction of the unit vector 
n, Jν = 1

4π

∫
Iν(
n) dΩ is the mean spectral intensity,

and dΩ [sr] is the 2D solid angle element. Note that Q has units [erg/cm3/s].
Figure 2 visualises some general findings in LTE. The typical situation (in disks, but not only there)

is that the gas is exposed to some distant radiation sources that are intrinsically hotter than the local

gas, for example Jν≈WBν(Trad) with W � 1 and Trad > Tg. This applies, in particular, to the optically

thin gas above the optical depth τ=1 surface of the disk. Only little of that irradiation penetrates into

the optically thick deeper layers, but even there, the typical situation of astrophysical gases is that the

local radiation field has a somewhat “bluer” characteristic than the local Planck function. Looking at

Eq. (4), this immediately implies the following:

• radiative heating is caused by high-energy absorption processes in the blue part of the spectrum,

where κabsν is large, for example UV-lines of atoms, ions and molecules, or bound-free processes,

• radiative cooling is caused by gas emission lines at long wavelengths, for example atomic fine-

structure lines, or rotational and ro-vibrational molecular lines.

These conclusions are so basic, that they normally hold even in non-LTE. In the depicted example, the

intersection point between Jν and Bν is located around λ≈1.5 μm. All radiative interactions shortward

of that wavelength cause net heating, all other processes cause net cooling.
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Figure 2. Overview of the radiative heating and cooling in LTE. The full line shows a diluted Planckian Jν =
WBν(Trad) with dilution factor W =0.029 and radiation temperature Trad =3000K. The dashed line is the Planck

function for Tg = 1500K. The arrows indicate the energy exchange between matter and radiation, favouring

radiative heating at short and radiative cooling at long wavelengths, respectively. The lower panel indicates the

wavelength regions of some selected radiative processes. Figure taken from Woitke et al. (1997).

2 N-level heating and cooling

Switching to the non-LTE approach from now on, the most basic interaction between matter and

radiation is the absorption and emission of line photons. Let’s consider any atomic or molecular

system consisting of N discrete energy levels Ei (i = 1, ...,N) [erg]. The first and main task is to

compute the non-LTE level populations ni [1/cm
3] from the various radiative and collisional rates

(Mihalas 1978):

ni

∑
j�i

Ri j =
∑
j�i

n j R ji (5)

Rul = Aul + BulJul +Cul , Rlu = BluJul +Clu , (6)

where nsp =
∑

i ni is the total particle density, u > l denote an upper and lower level (Eu > El),

Aul [1/s] is the Einstein emission coefficient, Blu = Aul c2/(2hν3ul) and Bul = Bul gu/gl [cm
2 Hz/erg]

are the Einstein coefficients for absorption and stimulated emission, Cul =
∑

k nkγ
k
ul(Tg) [1/s] are the

collisional de-excitation rates, Clu = Cul
gu
gl
exp(−ΔEul/kTg) are the collisional excitation rates, gu, gl
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Figure 3. N-level heating and cooling rate. Energy fluxes from left to right are cooling, and from right to left

heating. Subscript “coll” means collisional, and subscript “rad” means radiative.

are the statistical weights, nk [1/cm
3] the collision partner densities, and

Jul =
1

4π

�
φul(ν,
n) Iν(
n) dν dΩ (7)

is the line profile averaged mean intensity in units [erg/cm2/s/Hz/sr], where φul(ν,
n) [1/Hz] is the
local line profile function in direction 
n. Once the level populations ni have been determined, it

is straightforward to compute the net gain of thermal energy. If the N-system is closed and time-

independent, as depicted in Fig. 3, we can measure the net heating rate by either balancing the energy

fluxes due to the collisional processes, or by balancing the radiative energy fluxes

QN−level = Γrad − Λrad = Γcoll − Λcoll (8)

The radiative energy fluxes are discussed later. The collisional energy fluxes are given by

Γcol =

N−1∑
l=1

N∑
u=l+1

nu Cul ΔEul , Λcol =

N−1∑
l=1

N∑
u=l+1

nl Clu ΔEul , (9)

where ΔEul = Eu − El is the energy difference between level u and l. Note that Γcol −Λcol = 0 in LTE.

The first mayor practical problem is where to get the radiative data from (Ei, gi, Aul), and, in

particular, where to get the collisional data from
(
γk

ul(Tg)
)
, for all relevant collision partners k, for

all level combinations u, l, and at least for some temperature points that roughly cover the expected

gas temperatures in disks. Here, although the data situation has largely improved during the last

decades in form of various online platforms, the completeness of the collisional data, in particular for

molecules, is still a substantial problem. A good starting point to look for radiative and collisional

datasets suitable for astrophysical non-LTE modelling is the Leiden Atomic and Molecular Database,

see http://home.strw.leidenuniv.nl/~moldata.

The main physical problem is how to calculate Jul for all u, l? If all Jul are known, for example if all

lines are optically thin, then Eq. (5) becomes a linear system of equations, and ni can be computed in

one go, without any iterations. However, in general, Jul depends on the level populations anywhere in

the model volume, and an iterative method must be applied. Moreover, calculating Jul (Eq. 7) requires

to solve the line radiative transfer equation from every spatial grid point, along a sufficient set of rays

covering the full solid angle, and for a sufficient number of frequency points to cover the spectral line.

For a 2D disk, this would require to solve the line radiative transfer equation Nr ×Nz ×Nθ ×Nφ ×Nν ≈
106...108 times, where Nr,Nz,Nθ,Nφ,Nν denote the requested numbers of grid points for the radius r,
the height z, the solid angle (θ, φ) and the frequency ν, respectively. And that is true for one spectral

line only, and for one iteration step only. To compute the line heating/cooling in disks, we need to

consider thousands or rather tens of thousands of lines (just look at CO ro-vibrational, for example),

so a brute force method as sketched above is simply out of the question.
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2.1 Escape probability

A simple, beautiful, and closed analytic solution of the above problem can be derived by using a

certain set of assumptions called the “escape probability method” (Avrett & Hummer 1965; Mihalas

1978). It is the key to perform the line heating/cooling computations required in disk models (e.g.

Bruderer et al. 2014; Gorti & Hollenbach 2009; Woitke et al. 2009).

We start with the realisation that, in a disk in Keplerian rotation, there are no local radial velocity-

gradients along the 6 principal directions (up, down, inward, outward, tangentially forward and back-

ward)1, so the escape of line photon in disks can be approximately treated as in a static medium.

The first approximation is that we replace the line source functions at any other point along any ray

by the local line source function S L
ul. Often, the lines are extremely optically thick, so line photons

do not travel far, and the main effect we need to take into account is the modification of continuum

background radiation with line absorption and emission in a quite small “resonance region” around

the considered point. The second approximation is about the geometry of line emission. In a 2D

disk, the main escape direction for line photons is vertically upward, so we approximate the geometry

by a 1D semi-infinite slab. Using these assumptions, it is possible to solve the line transfer equation

analytically

Iν(μ) = I0ν (μ) exp
( − τcontν (μ) − τLν (μ)

)
+

∫ τcontν (μ)+τLν (μ)

0

S ν(τ′ν) exp(−τ′ν) dτ′ν (10)

≈ Icontνul
(μ) exp

( − τLν (μ)) +
∫ τLν (μ)

0

S L
ul(τ

′
ν) exp(−τ′ν) dτ′ν (11)

≈ Icontνul
(μ) exp

( − τLν (μ)) + S L
ul

(
1 − exp(−τLν (μ))

)
(12)

S L
ul =

2hν3ul

c2

(
gunl

glnu
− 1

)−1
, (13)

where I0ν (μ) is the irradiation from the boundary, S ν is the general line + continuum source function,

S L
ul [erg/cm

2/s/Hz/sr] is the local line source function, τcontν (μ) is the continuum optical depth and

τLν (μ) the line optical depth, measured from the boundary to the point of interest. Icontνul
(μ) is the

local background continuous intensity at line centre frequency νul, the result of a continuum radiative

transfer for Iν(μ) if line emission and absorption in the considered spectral line are disregarded.

To compute Jul according to Eq. (7), we use Eq. (12) for all directions μ=cos(θ). For the first term
in Eq. (12) we assume that the continuous intensities mainly originate from the central star directly,

so we use the radial line optical depth τLν = τradul φ(x). For the second term, since the line emission

is isotropic, we use the assumption of slab geometry in z-direction τLν (μ) = τ
ver
ul φ(x)/μ, introducing a

dimensionless line profile function of Doppler type φ(x)=exp(−x2)/
√
π, where x= (ν− νul)/ΔνD. The

frequency width ΔνD = νulΔvD/c is given by the velocity width ΔvD =

√
2kTgas

msp
+ v2

turb
, where msp is

the species mass and vturb the turbulent velocity. The result is

Jul ≈ P pump

ul Jcontνul
+

(
1 − P esc

ul
)

S L
ul (14)

P pump

ul (τradul ) =

∫ +∞

−∞
φ(x) exp

(
− τradul φ(x)

)
dx (15)

P esc
ul (τverul ) =

1

2

∫ +∞

−∞
φ(x)

∫ 1

0

exp
(
− τ

ver
ul φ(x)
μ

)
dμ dx (16)

1Although there are actually local non-zero velocity gradients in all other directions!
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τradul =

∫ r

0

Aul c3

8πν3ulΔvD

(
nl(r′)

gu

gl
− nu(r′)

)
dr′ (17)

τverul =

∫ ∞

z

Aul c3

8πν3ulΔvD

(
nl(z′)

gu

gl
− nu(z′)

)
dz′ , (18)

where P esc
ul is the escape probability and P pump

ul the pumping probability, which only depends on line

optical depth, and can be pre-tabulated, or treated with approximate formulae (Woitke et al. 2009).

τradul and τverul are the radial and vertical line optical depths.

Equation (14) is the central equation of the escape probability method. If the line is optically

thin, Jul is simply given by Jcontνul
, i.e. the result from a pure continuum radiative transfer. If the line

optical depths become large, P esc
ul and P pump

ul become small, and Jcontνul
is more and more replaced by

the local line source function. In other words, an optically thick line sees its own source function.
The solution of the non-LTE rate equations (Eq. 5) becomes very easy this way. In fact, one can

eliminate the unknown line source function S L
ul by introducing the following effective rates R̃ul =

AulP esc
ul + BulP

pump

ul Jcontνul
+ Cul and R̃lu = BluP pump

ul Jcontνul
+ Clu. This procedure is very advantageous

numerically, and dramatically improves convergence and stability in optically thick regions, because

it avoids to trace any emitted line photons that are directly re-absorbed locally, which has no net effect

on the level populations.

The derivation of Eq. (14) shows, however, that the 2D disk geometry raises a few cumbersome

questions about what are the appropriate paths or directions of continuous photons making their way

to the point of interest, and how line photons escape from that point. Since the irradiation mainly

comes from a point source (the star), but the emission is isotropic, the corresponding pumping and

escape probabilities will not be the same in 2D or 3D P pump

ul � P esc
ul . This problem is similar to finding

appropriate “self-shielding” factors for the reduction of photo-ionisation and photodissociation rates

in chemistry.

Another principle problem of the escape probability method is that it doesn’t take into account

the effect of distant strong line source functions. In protoplanetary disks, there is often a disk layer

where the densities are high, so the level populations are close to LTE, i.e. strong, and a lot of line

photons are emitted from the top of that layer into the optically thin model volume above. In these

tenuous layers, we get non-LTE populations in the optically thin case, but the recipe Eq. (14) tends to

underpredict the level populations, because it uses the local line source function only, which is low

because it’s radiatively de-populated. Further discussions about the pumping and escape probabilities

in discs can be found in (Woitke et al. 2009, see their Fig. 5 and text on page 393).

Kamp et al. (2010, see their Fig. 6), and also Kamp (2015) have made detailed comparisons

between the results from escape probability and from the detailed Monte-Carlo line radiative transfer

code RATRAN (Hogerheijde & van der Tak 2000). In case of the 3 fine-structure lines of OI, they

found very good agreement between the predicted line fluxes (deviation < 5%) whereas assuming LTE

would overpredict the lines by up to 70%. This is a fine example of an un-written law in non-LTE

line transfer, namely that the results from escape probability are often surprisingly accurate, despite

the strong assumptions used.

2.2 Computation of the net heating rate

The dependency of P esc
ul and P pump

ul on the respective line optical depths introduces a further com-

plication. The last increments of the radial and vertical line optical depths Δτradul and Δτverul , from the

neighbouring grid points to the current grid point, depend on the level populations in the current point,

which we wish to compute.
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This dependency requires to use an iterative approach, and we use a fully implicit integration
scheme where the Δτ are calculated according to the spatial path lengths between these points × the

local level populations. The usage of such an implicit scheme seems necessary to stabilise the line

optical depth integrations. In order to check the quality of solution, and convergence of the implicit τ
integration scheme, we compute the radiative energy fluxes as

Γrad =
∑
lines

nlΔEulP
pump

ul BluJcontνul
(19)

Λrad =
∑
lines

nuΔEul
(
P esc

ul Aul + P pump

ul BulJcontνul

)
(20)

and use Eq. (8) to check whether indeed Γrad − Λrad = Γcoll − Λcoll is valid.

Equations (19) and (20) shows again how the various chemical and physical processes are in-

terlinked in disks. In order to calculate the line heating/cooling rates, we need to know the various

particle and collision partner densities nsp, nk (→ chemistry), and we need to know the continuous

background radiation field Jcontνul
(→ continuum radiative transfer). Vice versa, the chemistry requires

the gas and dust temperatures (→ heating & cooling,→ continuum radiative transfer).

Figure 4 shows the resulting line cooling rate Q for one exemplary atomic fine-structure line (left)

and for CO ro-vibrational cooling (right), without continuous background radiation (from Woitke

et al. 1996). Three different line cooling regimes can be distinguished depending on the relation

between the local gas density n〈H〉, the critical density for LTE population ncr, and the density where

the considered line becomes optically thick nthick. The case discussed in Fig. 4 is different from the

static escape probability method applied to protoplanetary disks (Eqs. 17 and 18), namely the limiting

case of large velocity gradients
〈

dv
dl

〉
(Sobolev theory) in a spherical medium, but the concept and

Figure 4. Example atomic fine-structure line cooling rate per mass Q/ρ (left), and CO vibrational cooling (right),

from Woitke et al. (1996, reproduced with permission c© ESO). Jcont
ν =0 is assumed here, and a different way to

compute the escape probabilities for an expanding gas in spherical symmetry is applied (Sobolev limit of large

local velocity gradients).
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fundamental results are comparable. In this limiting case, the critical densities are given by

ncr =
Aul

Cul/n<H>
(21)

nthick =
8π

Aul

gl

gu

(
νul

c

)3 〈dv
dl

〉
n<H>
nsp

(22)〈
dv
dl

〉
=

1

3

∣∣∣∣∣∂v∂r
∣∣∣∣∣ + 2

3

(
2 x−1/2

0
− 1

) ∣∣∣∣∣ vr
∣∣∣∣∣ where x0 = 1 +max

{
0,−∂v
∂r

/ v
r

}
, (23)

see further details in (Woitke et al. 1996). At low densities n〈H〉<ncr, the cooling rate scales as Q ∝ ρ2
and the levels are populated sub-thermally Texc < Tg. At very high densities n〈H〉 > nthick, all lines

are optically thick, the levels are thermally populated, and Q becomes constant, proportional to the

number of considered spectral lines. In between, we have the case of optically thin LTE cooling,

where the cooling rate/gas mass is most efficient and scales as Q ∝ ρ. In case of CO ro-vibrational

cooling, which is a superposition of hundreds of individual lines, we find ncr > nthick. Here, optically
thin LTE cooling never occurs, but the cooling behaviour changes directly from Q= const to Q ∝ ρ2
at n′cr=

√
ncr nthick. The ro-vibrational levels are thermally populated already at n〈H〉>n′cr (n′cr<ncr).

3 Photo-ionisation heating and recombination cooling

Consider a pair of photo-processes of type

AB + hν
k f
�
kr

A + B . (24)

Applications in mind could be the photo-ionisation and direct recombination of H− (AB=H−, A=H,
B=e−), or the bound-free photo-ionisation of neutral carbon (AB=C, A=C+, B=e−), but the following
method may also be applicable to a more general pair of photo-dissociation and radiative association

reactions. The forward rate coefficient kf [1/s] is given by

k f = 4π

∞∫
νthr

Jν
hν
σbf(ν) dν , (25)

such that nAB k f [cm−3s−1] is the number of photo-ionisations per volume and time. σbf(ν) is the
photo cross section [cm2] of AB for the bound-free forward reaction. Energy conservation implies

that

hν = Eb + Eth (26)

where Eb = hνthr is the binding energy of AB, νthr is the threshold frequency, and Eth = 1
2
mv2 is

the excess thermal energy liberated by the photo-reaction. Note that, in general, A and B could

also end up in an electronically excited state, or, if A or B are molecules, they could carry away

rotational and vibrational excitation energies as well. Using Eq. (26) would then assume that all these

excitation energies are also thermalised in some way. The bound-free photo-ionisation heating rate
Γbf[erg s

−1cm−3] is then given by

Γbf = nAB 4π

∞∫
νthr

Jν
ν − νthr
ν
σbf(ν) dν . (27)
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The reverse process, the recombination cooling rate, is slightly more difficult to understand. A direct

recombination, or radiative association, reduces the number of particles by one (e.g. one thermal

electron disappears), so the cooling rate should be of order nAnBkr(Tg)〈Eth〉, where the mean disap-

pearing thermal energy 〈Eth〉 ≈ kTg. Let’s assume that the recombination rate coefficient is given by

an Arrhenius law with fit coefficients α, β, γ as

kr(Tg) = α
( Tg

300K

)β
exp

(
− γ

Tg

)
. (28)

In order to investigate the details of 〈Eth〉, we consider the pair of photo-processes (24) in the case

of thermodynamical equilibrium, where Jν = Bν(Tg) and where every reaction is in detailed balance

with its direct reverse, i.e.

n�ABk f

∣∣∣
Jν=Bν(Tg)

= n�An�Bkr(Tg) . (29)

where the � superscript indicates the particle densities in thermodynamical equilibrium. Thus, we find

the recombination rate coefficient to be

kr(Tg) =
n�
AB

n�
A

n�
B

4π

∞∫
νthr

Bν(Tg)

hν
σbf(ν) dν , (30)

which is known as the bound-free Milne relation (Mihalas 1978). Equation (30) allows us to calculate

the recombination cooling rate Λbf[erg s
−1cm−3] analogous to Eq. (27)

Λbf = nAnB

n�
AB

n�
A

n�
B

4π

∞∫
νthr

Bν(Tg)
ν − νthr
ν
σbf(ν) dν . (31)

Finally, we eliminate the fraction n�
AB
/(n�

A
n�
B
) by using Eqs. (28) and (30)

Λbf = nA nB kr(Tg)

∫ ∞
νthr

Bν(Tg)
ν−νthr
ν
σbf(ν) dν∫ ∞

νthr

Bν(Tg)

hν σ
bf(ν) dν

, (32)

where the r.h.s. fraction can be identified as the mean thermal energy 〈Eth〉 disappearing from the gas

phase due to a recombination process.

4 Free-free transitions

Collisions between electrons and other particles lead to sudden accelerations of the electrons during

the encounter which cause the emission of radiation (Bremsstrahlung). These free-free transitions

directly convert thermal energy into photon energy (free-free cooling). The reverse process is a 3-

body encounter of an electron with another gas particle and a photon, which can destroy the photon

and lead an acceleration of the electron (free-free-heating). Since these processes are completely

controlled by the thermal motion of the charged particles, we can assume LTE and apply Eq. (4). The

heating rate Γff and cooling rate Λff are given by

Γff = 4π

∫
κffν Jν dν (33)

Λff = 4π

∫
κffν Bν(Tg) dν (34)

κffν = n2
e σ

ff
ν + ne nH σH

−ff
ν + ne nH2

σ
H−

2
ff

ν + ne nHe σ
He−ff
ν , (35)
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Figure 5. Inelastic collisions between gas and dust (thermal accommodation) lead to an energy exchange between

the gas and the dust phases, whereas the dust is usually close to radiative equilibrium, i.e. tightly coupled to the

mean energy density in the surrounding radiation field. Any excess dust energy, i.e. received by inelastic gas

collisions, is quickly radiated away.

where κffν is the free-free gas opacity [cm
−1]. The free-free cross-sections σffν [cm5] for bremsstrahlung

of singly ionised gases can be e.g. taken from (Hummer 1988), for H−ff from (Stilley & Callaway

1970), for H−
2ff from Somerville (1964), and for He−ff from John (1994).

5 Dust thermal accommodation

Inelastic collisions lead to an energy exchange between the gas and the dust particles as sketched

in Fig. 5. In the microscopic picture, the impinging gas particles (with internal energy ∝ Tg) may

get temporarily physisorbed on the surface, where they hop around and accommodate their internal

energy with the dust surface (∝ Td), before they are released again back into the gas phase. The net

heating rate of thermal accommodation can be expressed as

Γacc − Λacc = π〈a2〉 nd

√
8kTg

πmH

n〈H〉 αacc (2kTd − 2kTg)

≈ 4 × 10−12 π〈a2〉 nd n〈H〉 αacc
√

Tg (Td − Tg) (36)

(Burke & Hollenbach 1983), where π〈a2〉 nd is the total dust cross section per volume, a the dust

particle radius,
√
8kTg/(πmH) the mean velocity of gas particles, n〈H〉 the gas particle density, and

(Td − Tg) is proportional to the net energy transfer rate due to inelastic collisions. The efficiency for

inelastic collisions is quite high (see Groenewegen 1994)

αacc ≈ 0.1 + 0.35 exp

⎛⎜⎜⎜⎜⎜⎝−
√

Tg + Td

500K

⎞⎟⎟⎟⎟⎟⎠ . (37)

Groenewegen (1994) fitted the data in Burke & Hollenbach (1983) using the function form intro-

duced in Hollenbach & McKee (1979). Due to the ρ2-dependency, thermal accommodation usually

provides both the dominating heating process and the dominating cooling process for the gas in the

disk midplane, as soon as high-energy photons are sufficiently absorbed, enforcing Tg ≈ Td in the

midplane.

The influence of the thermal accommodation heating/cooling on the dust energy balance can usu-

ally be neglected in models, because the absorption cross sections of dust particles are huge, making

sure that the dust temperature Td remains well coupled to the ambient radiation field. This situation

(see Fig. 5) usually turns the thermal accommodation heating/cooling into a small perturbation for

the dust energy balance, whereas it remains important for the gas energy balance. However, disks

may become massively optically thick in the continuum, in which case the radiation field will quickly

adapt to any dust temperature structure. A meaningful example here is viscous heating, which may

cause a strong heating of the gas phase in the disk midplane. This heat is then mostly transferred to the
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Figure 6. Heating due to high-energy irradiation, triggered by UV, and X-ray photons, and by cosmic rays.

optically thick dust, for example by thermal accommodation, and the dust will then transport that ex-

cess heat away, in a diffusive way, toward the disk surface, where it is radiated away. If we want to get

the physics of viscous heating correct, it is obviously important to treat the thermal accommodation

heating/cooling properly, also in the dust energy balance.

6 High-energy heating processes

The central stars of protoplanetary disks are known to be strong UV and X-ray emitters, due to a

wealth of high-energy processes occurring in or very close to the stellar surface, usually denoted as

“stellar activity” (e.g. chromospheres, coronae, star spots, magnetic reconnections, ...), as well as the

final deceleration of the in-falling matter in the accretion columns in form of standing shock fronts.

All these complicated processes are expected to occur within a fraction of one, or maybe a few, stellar

radii, i.e. well inside the inner rim of the dusty disk, R� ≈2R� ≈0.01AU � Rin. Therefore, in a disk

model, we treat these processes as an additional, external (point) source for irradiation of the disk,

e.g. with measured spectral flux. The additional, non-photospheric UV and X-ray irradiation causes

strong non-LTE effects in the disk, and strong heating of the disk surface layer, just where the gas

emission lines come from.

That being said, an important question in this context is how deep UV and X-rays penetrate into

the disk, where the assumed position and spatial extension of the UV and X-ray source (see Sect. 6.4),

and the geometry of the disk play a crucial role. In the following subsections, we will assume that an

UV and X-ray continuum radiative transfer has been carried out (including scattering) such that the

local mean intensity Jν at UV wavelengths and the local primary X-ray ionisation rate is known.

The energetic effect of the high-energy irradiation (UV, X-rays, also cosmic rays) is clearly one

way, pure heating, because the temperatures in the disk are much too low to cause any significant

emission at these wavelengths. Without the high-energy heating processes, the molecular gas would

actually be expected to be cooler than the dust (see Fig. 2), because the dust, in general, has a “blue”

absorption characteristic (see Min 2015), whereas a molecular gas has its majority of spectral lines

in the mid-IR and sub-mm which emphasise the cooling. However, if Tg < Td was true, the disk

would be expected to show a wealth of molecular absorption lines in the near and mid-IR where the

disk is optically thick. The observational fact that, in contrast, disks generally exhibit gas emission

lines, from near-IR to mm wavelengths, shows that high-energy heating processes must be the key to

understand the gas temperatures in disks.
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6.1 X-ray and cosmic ray heating

The interaction of X-rays with the gas in a protoplanetary disk (or with cosmic ray particles, which is

actually quite similar) involves a cascade of collisional, ionisation, chemical and radiative processes

where, step by step, the kinetic energy of the involved photons, ions and electrons is reduced by

inelastic processes, until their remaining excess kinetic energy can be thermalised (Glassgold et al.

2012). X-rays start to interact with the gas via primary ionisations, for example kicking out K-shell

electrons from the ambient atoms and molecules (see Güdel 2015). These super-thermal electrons then

keep on speeding through the gas, ionising further particles on their way (secondary ionisations), the

ionised particles can produce secondary X-rays (Auger effect), and the recombination of the ionised

atoms and molecules produce secondary UV photons which lead to further ionisations.

Detailed studies of this energy cascade have been carried out by Dalgarno et al. (1999). The most

effective heating process has been identified to be the Coulomb heating, where the super-thermal

electrons undergo elastic collisions with other, thermal electrons which accelerate the latter, i.e. heat

the gas. The results are complicated, but can be generally formulated as

ΓXray(Cou) = ζXray
(
QCou

H nH + QCou
H2

nH2
+ ...

)
. (38)

Analogously, the heating of the gas due to cosmic rays is

ΓCR = ζCR
(
QCR

H nH + QCR
H2

nH2
+ ...

)
, (39)

(see also Hollenbach & McKee 1989), where nH, nH2
are the various particle densities, and ζXray,

ζCR [1/s] are the local primary ionisation (ion-pair production) rates. Equations (38) and (39) are sim-

plified here, adapted to the case of cosmic ray heating. The various Q’s [erg] measure the amount of

energy thermalised via Coulomb interactions along the cascade, which is featured by certain branch-

ing ratios depending on the initial state of the gas, for example the initial H/H2 ratio, and the initial

degree of ionisation. Typical values for the Q’s range from a fraction to a couple of eV per ion-pair

(Dalgarno et al. 1999).

Cosmic rays (CR) have finite penetration depths, depending on their energy. After convolution

with the cosmic ray’s initial energy spectrum, the resulting cosmic ray ionisation rate approximately

becomes an exponential ζCR = ζCR,0 exp(−Σ/ΣCR) as function of gas column density Σ [g/cm2] (Fujii

et al. 2011). However, the value of ΣCR is pretty uncertain, because the initial cosmic ray energy

spectrum outside of the heliosphere (i.e. also outside of the Earth’s magnetosphere) is not well-

known. Umebayashi & Nakano (2009) provide a value of ΣCR ≈ 96 g/cm2, which corresponds to an

e-folding hydrogen nuclei column density of about 4 × 1025 cm−2. Whether such magnetic shielding

effects might also reduce the cosmic ray ionisation rates in protoplanetary disks is not clear. Cleeves

et al. (2013, 2015) argue that stellar winds can power a heliosphere-like analog where the cosmic rays

are efficiently "absorbed" by the stellar wind plasma which is magnetised, diminishing the CR disk

ionisation rates by several orders of magnitude for CR energies ∼<1GeV.
The unshielded H2 CR ionisation rate is of order ζCR,0 ≈ 1.4 × 10−17 s−1 (McElroy et al. 2013).

However, if the protoplanetary disk under consideration is situated in a star formation cluster which

has already developed massive energetic wind bubbles or supernovae, which are likely to produce

new cosmic rays in shocks, ζCR,0 might be much larger. In contrast, if magnetic fields can effectively

shield the disk, the radioactive decay of primordial 26Al provides a minimum ionisation rate of about

7.3 × 10−19 s−1 (Umebayashi & Nakano 2009).

6.2 Dust photoelectric heating

The photoelectric effect (PE) on dust grains is known to provide one of the major heating mechanism

for the interstellar medium (ISM), see e.g. Bakes & Tielens (1994). Absorption of UV radiation by
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a dust grain can lead to the ejection of a non-thermal electron (and a positive charging of the grain)

beyond a certain threshold energy according to

hν =
1

2
mev

2
e + eU (40)

where hν is the energy of the UV photon, eU is the work function at the surface of the grain, i.e. the

minimum energy required to remove a delocalised electron from the surface, which depends on size,

charge, and material of the grain. The excess kinetic energy 1
2
mev

2
e of the escaping electron is assumed

to be thermalised.

In order to calculate the total PE heating rate, we must solve consistently the charging balance

of the grains. The PE leads to positive grain charges, but collisions with gaseous ions and electrons

tend to charge the grains negatively, because the thermal velocities of free electrons are larger than

the thermal velocities of positive ions. In principle, the different charged states of dust grains must

be included in the chemistry to get consistent results including the electron concentration, which

is effected by the grain charging. Detailed studies have been done under conditions typical for the

interstellar medium (e.g. Bakes & Tielens 1994). The result can be summarised as

ΓPE = 2.5 × 10−4ε (x) κabsdust χ (41)

where ε is a material-dependent efficiency that depends on grain charge parameter x =
√

Tgas χ/nel,
where nel [cm

−3] is the local density of free electrons, κabs
dust

[cm−1] is the dust absorption coefficient,

and χ is a dimensionless measure for the strength of the local UV-field

χ =

∫ 205 nm

91.2 nm

λ uλ dλ
/ ∫ 205 nm

91.2 nm

λ uDraineλ dλ , (42)

where λ uλ = 4π
c λ Jλ [erg/cm3] is the local photon energy density. λ uDraineλ is an estimate of the UV

radiation field in the local interstellar medium as emitted from distant O and B stars by Draine &

Bertoldi (1996), who have deduced these results from the original work of Draine (1978).

The efficiencies ε are of order 0.1 for graphite and silicates. A straightforward way to compute

the PE heating rate is to compute χ from a dust continuum radiative transfer, and then to use Eq. (41),

originally developed for ISM conditions. The problem in disks is that (i) the grains can be huge, a

mm-grain can easily pick up thousands of elementary charges, (ii) the UV radiation field close to the

central star can be huge, for example χ= 108 is typically reached at a distance of about 0.1AU from

a TTauri star, and (iii) the wavelength range of the radiation should be extended toward the soft UV

and optical, where in particular Herbig Ae/Be stars can provide vast amounts of radiation. Therefore,

a full revision of the PE heating effect under disk conditions would be highly desirable, also because

new laboratory results are available (e.g. Abbas et al. 2006). Surprisingly, the large grain photoelectric

yields measured by Abbas et al. (2006) are much larger than theoretically expected.

Following the straightforward way to use Eq. (41) leads to quite a limited importance of the dust

PE heating in protoplanetary disks. The reason is that the dust absorption coefficient per gas mass,

κabs
dust
/ρ, is lower than in the interstellar medium, by orders of magnitudes, because (we assume that)

the dust grains in disks are much bigger on average.

6.3 PAH heating

Photoelectric effect on PolyAromatic Hydrocarbon molecules (PAHs) possibly plays a major role for

the heating of the gas in protoplanetary disks. PAHs seem to have sizes of at least 100 carbon atoms in
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Figure 7. Comparison of dust and PAH opacities in disks. The dust opacities (black= extinction, blue=

scattering, red= absorption) are quite low in the UV, according to our assumption of a continuous dust size

distribution between 0.05 μm and 3mm with powerlaw index -3.5, and dominated by the PAH opacities (green

and light green represent neutral and charged PAHs). We have selected a PAH with NC = 100 carbon atoms and

NH =25 hydrogen atoms, and followed the PAH opacity model by Draine&Li (2007). A dust/gas mass ratio of

100 is assumed, and the PAH abundance with respect to standard ISM is assumed to be fPAH=0.5.

disks (Visser et al. 2007), and to be somewhat underabundant with respect to the interstellar medium,

fPAH ∼< 0.1 (Geers et al. 2006), where fPAH is the PAH particle abundance with respect to the standard

PAH abundance in the ISM of Tielens (2008)

nPAHs/n〈H〉 = 3 × 10−7 fPAH
50

NC
. (43)

The physics of the PE of PAHs is very similar to the dust PE discussed in the previous section.

For a selected PAH size, PAH molecules can be charged positively up to N times (N = 3 for 100

carbon atoms), can be neutral, or can be singly negatively charged. Therefore, we put species PAH−,
PAH, PAH+, PAH2+, PAH3+ (k = −1, 0, 1, 2, 3) as additional specimen into the chemistry, where

they undergo photo-ionisation, recombination & charge exchange reactions, with photo-ionisation

rate [1/s]

Rphoto

PAHk =
4π

ch

λk
thr∫

91.2 nm

λJλ σk
PAH(λ)Yk(λ) dλ , (44)

where IPk is the size-dependent ionisation potentials of the PAH molecules with charge k, λthr is the
threshold wavelength corresponding to hν = IPk. According to the approximate formula in Wein-

gartner & Draine (2001), the selected PAH with NC = 100 and NH = 25 has ionisation potentials

IP−1=3.32 eV, IP0=5.85 eV, IP+1=8.38 eV and IP+2=10.91 eV, and the triply ionised state cannot be
ionised further with an FUV photon (λ>91.2 nm). σk

PAH
[cm2] is the PAH absorption cross section as
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Figure 8. The UV radiation field strength relative to ISM standard conditions, χ, as defined in Eq. (42), as

function of position (r, z) in a typical T Tauri disk model. The l.h.s. shows the results of a simplified UV radiative

transfer model, where only dust absorption is taken into account, the r.h.s. shows the solution of a full dust

radiative transfer including dust scattering. The white dashed contour lines show the vertical AV .

shown in Fig. 7, and Yk is the PE yield (see e.g. Tielens 2008). The PAH photoelectric heating rate

and recombination cooling rate are then given by

ΓPAH =
4π

hc

∑
k

nk
PAH

λk
thr∫

91.2 nm

λJλ σk
PAH(λ)Yk(λ)

(
hν − IP k

)
dλ (45)

ΛPAH =
∑

k

nk
PAH ne Rk

rec(Tg)
3

2
kTg , (46)

where the
(
1.5 kTg

)
is an approximation for 〈Eth〉, the mean thermal energy disappearing from the gas

phase due to a recombination process, see Sect. 3.

6.4 UV and X-ray radiative transfer

All high-energy heating processes discussed in this section (Sect. 6) are driven by UV and X-ray

photons as present at the location of interest. In other words, we must know the local UV radiation

field (Jν between 91.2 nm and about 400 nm, or simply χ, see Eq. 42) and the local primary X-ray

ionisation rate ζXray, respectively. These quantities are affected by absorption and scattering in the

disk, so the question arises how, and how deep, these high energy photons penetrate the disk. Since

disks are usually optically thick in the UV as well as in X-rays, we require the solution of a full

radiative transfer in the FUV and X-ray spectral regions, including scattering.
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X-ray absorption only X-ray scattering included

standard ProDiMo Christian Rab, PhD thesis, Vienna University

Figure 9. The primary X-ray ionisation rate ζ as function of position (r, z) in a typical T Tauri disk model. The

l.h.s. diagram shows the results if only gas absorption is taken into account, the r.h.s. shows results from a full

X-ray radiative transfer which includes gas (e.g. Compton) scattering. The white dashed lines show where the

ionisation by cosmic rays and by radioactive decay, respectively, become more important than by X-rays. The

X-ray source is a point source at (0,0) in the model.

The UV radiative transfer is mostly dominated by the dust, which can be easily included in the

continuum radiative transfer2. Figure 8 demonstrates the importance of UV dust scattering. In a pure

dust absorption model (l.h.s.), the local UV intensities would be very low indeed, the line forming

regions (typically between about AV = 0.01 and AV = 1) would be very cold. However, UV photons

can reach the disk indirectly by scattering, the mainstream pathway of a UV photon reaching the disk

involves at least one of two scattering events! A typical UV photon hitting the disk is a UV photon

that has been emitted by the star, was scattered by small dust particles in the optically thin disk surface

layer, and approaches the disk from the top. Consequently, as shown on the r.h.s. of Fig. 8, the local

UV strength χ is much larger than expected in the line forming regions, the difference can easily be

as large as 6 orders of magnitude.

Bottom line is, the UV radiation field in disks is vastly different from interstellar clouds. The UV

radiation source (the central T Tauri star) is very close and strong, and has a different characteristic

colour, and lines, as compared to the standard ISM UV field. Due to the scattered nature of UV and X-

ray photons reaching the disk, the disk geometry plays a crucial role for the temperature determination

in the line forming regions. This raises some uncomfortable questions when trying to take over heating

formulae from interstellar cloud and PDR research into disk models.

One more factor of uncertainty, maybe the largest factor altogether, is the role of UV gas opacities

in disks. Since dust particles in disks are expected to be much bigger on average, due to grain coagu-

lation in the disk, the UV dust opacities are reduced by several orders of magnitude with respect to the

2However, standard Monte-Carlo techniques usually don’t pay much attention to these wavelength, because they are not

meaningful for the dust energy budget, we have modified both MCFOST and MCMax to compute the UV radiation field with

higher precision, i.e. less MC noise.
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interstellar medium (see Fig. 7). Hence, PAHs or molecules may provide the dominant source of UV

opacities. Usually, in PDR research, the influence of such gas opacities is considered to be “small”,

and the corrections with respect to a pure dust radiative transfer model are handled by (self-) shielding

factors according to the gas column densities towards the UV source. But clearly, if those opacities be-

come dominant, this concept brakes down, and the continuum transfer should contain these opacities

consistently. This is the topic of ongoing research, very much work in progress.

The problem is challenging, because the UV gas opacities depend on chemical concentrations,

hence chemistry and radiative transfer must be solved in an iterative, consistent way. Bethell & Bergin

(2011), argue, for example, that Ly-alpha resonance scattering in the tenuous disc surface layers leads

to an amplification of photo-dissociation in discs, because the Ly-alpha photons emitted from the star

can be re-directed in a large volume around the disk, with selective destruction of HCN, NH3 and

CH4, which have non-zero photo-coss-sections at 121.6 nm, and an enhancement of CO, CN, and SO.

The X-ray radiative transfer is driven by the gas absorption and scattering opacities of either the

abundant H and He atoms, and by the heavy ions like Fe, depending on X-ray energy. Scattering turns

out to be just as important for X-rays as for UV photons (see Fig. 9). The key process is Compton

scattering, in particular the high-energy X-rays are scattered quite efficiently. One might think that

Compton scattering is highly in-elastic and angle-dependent, however this is true for γ-rays only.

Even at E = 10 keV, which is quite a “hard” wavelength for X-rays, the scattering phase function

is not so much different from the usual gas Rayleigh scattering phase function. Models with X-ray

radiative transfer must involve iterations, because the abundance of the opacity carriers is a result of

the chemistry, and the opacities determine the local X-ray intensities.

7 Heating processes involving H2

A number of follow-up processes occur if the abundant H2 molecules absorb a FUV photon, see black

arrow in Fig. 10, resulting in a H2 molecule in an electronically excited state.
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Figure 10. Processes occurring after H2 is excited by a FUV photon into an electronically excited state. Vertical

axis is excitation energy, horizontal axis is inter-nuclear distance.
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7.1 H2 photo-dissociation heating

The photodissociation of H2 is triggered by the absorption of FUV radiation in the Werner & Lyman

UV line series, exciting the molecule to an electronic excited, but still bound state. Fast radiative

(infrared) vibrational de-excitation leads to an increases of the inter-nuclear distance (Fig. 10). Finally,

the electronically excited state will emit another UV photon which brings the H2 back to it’s electronic

ground state. This state is highly excited (vibrationally), and in about 10% of all cases, the molecules

ends up in an unbound state which dissociates. The two liberated H-atoms are known to carry away

about 0.4 eV in form of kinetic energy (the mean energy excess of the S 0 states as fluorescently

populated from above over the E(R → ∞)-value in Fig. 10, see Stephens & Dalgarno 1973). The

heating rate due to H2 photodissociation is hence

Γ
H2

ph
= 6.4 × 10−13 RH2

ph
nH2

(47)

where RH2

ph
is the H2 photo-dissociation rate ∝ χ, including H2 self-shielding factors.

7.2 Excited H2 de-excitation

In 90% of all cases, however, after the absorption on an FUV photon, the electronically excited H2

molecule returns to a bound, though highly vibrationally excited state in the electronic ground level.

This state will either further decay radiatively (in which case there is no further impact on the thermal

energy of the gas), or collisionally. In the latter case, the vibrational excitation energy is thermalised,

and we have a heating rate as

Γ
H�

2

coll
= ΔE Rcoll

H�
2
→H2

(
nH�

2
− nH2

exp
(
− ΔE

kTg

))
(48)

Rcoll
H�

2
→H2

= nH CH
ul(Tg) + nH2

CH2

ul (Tg) . (49)

The formulation of the heating rate by collisional excitation of vibrationally excited H2 follows Tie-

lens & Hollenbach (1985) where one pseudo vibration level with energy difference ΔE ≈ 2.6 eV is

introduced, which is fluorescently pumped by FUV radiation and has a radiative lifetime of about

∼ 280 yrs (H2 quadrupole lines!). The collisional de-excitation rates Cul, for collisions with H and

H2, are also given in Tielens & Hollenbach (1985). The second term in Eq. (48) corrects for colli-

sional excitation (cooling). In order to compute the particle densities of the excited and ground state

molecule, n�
H2

and nH2
, respectively, H�

2
is included in the chemistry, where the rate of fluorescent

formation of H�
2
is given by 10× the photo-dissociation rate.

7.3 H2 formation heating

When molecular hydrogen forms on dust surfaces, the H2 binding energy of 4.48 eV is released. This

energy will partly heat the dust grain, and will partly be distributed over rotational, vibrational and

kinetic energy of the escaping H2 molecule. The latter fraction means heating of the gas. Duley &

Williams (1986) carried out a theoretical study of the details of the formation process, and concluded

that the escaping H2 molecule should be kinetically and vibrationally excited, but rotationally cool.

For simplicity, if we assume that about 1/3 of the energy goes into translation, i.e. about 1.5 eV (Black

& Dalgarno 1976), the H2 formation heating rate is given by

Γ
H2

form
= 2.39 × 10−12 RH2

nH (50)
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Figure 11. Schematic energetics in disk chemistry (from Woitke et al. 2011, reproduced with permission c©
ESO). The most abundant stable molecules are attacked by high-E radiation, leading to energetically less stable

species. As these fragments recombine and react chemically to re-form the stable molecules, binding energy is

liberated which may be radiated away (green wiggled arrows) or may heat the gas (red arrows).

where RH2
[1/s] is the H2 formation rate on grain surfaces and nH is the particle density of atomic

hydrogen.

Just as the H2 photo-dissociation heating and the H�
2
collisional de-excitation heating, the H2

formation heating can be considered as a follow-up process of UV photons hitting H2, because that’s

the key process to destroy the H2 molecule in the first place, before it can again recombine on dust

surfaces. In other words, without UV photons, there is only very little nH.

8 Chemical heating and cooling

The previous section provided two examples for how various follow-up collisional, radiative and

chemical processes, after the initial absorption of a UV photon by an H2 molecule, can lead to heating

while finally re-installing chemical equilibrium. These two examples (the heating by collisional de-

excitation of H�
2
, and the heating by H2 formation on grains) show interesting ways how to partly

thermalise incoming UV photon energy.

This reveals a more general principle as sketched in Fig. 11. In kinetic chemical equilibrium,

there is actually no net formation/destruction of any chemical species, but the chemistry is organised

in never ending, complicated reaction cycles. These cycles are powered by incoming UV-photons,

X-ray photons or cosmic rays. If all high-E sources would be taken away, and if the gas is cold, the

chemistry would eventually become very pure, with only the most stable molecules with closed shells

being abundant, such as H2, CO, CH4, N2, and NH3, and practically no reactions occurring at all.

However, since the stable molecules are continuously attacked by high-energy radiation, some

of those molecules ionise or form smaller reactive fragments which are, in sum, energetically less

favourable. Subsequent chemical reactions will then stepwise re-form the stable molecules along

complicated paths. The overwhelming majority of those reactions are “exothermic”, i.e. they release

heat. Some parts of that surplus energy will be lost in form of secondary photons, but the main effect

is clear. We formulate the “chemical heating” rate as

Γchem =
∑

r

R(r) γchemr ΔHr , (51)

EPJ Web of Conferences

00011-p.20



where r is the index of a gas-phase chemical reaction, R(r) is the corresponding reaction rate

[1/cm3/s], and

ΔHr =
∑
pr

ΔH0
f (pr) −

∑
ed

ΔH0
f (ed) . (52)

is the net reaction enthalpy, i.e. the net heat production per reaction. ΔHf (ed) and ΔHf (pr) are

the formation enthalpies of the involved educts and products. To simplify, we take the formation

enthalpies at zero temperature from Millar et al. (1997) instead. Is it important to evaluate the sum

in Eq. (51) only for pure gas phase reaction, and stay away from any reactions that have cosmic rays,

dust, or photons on either side of the reaction, also from reactions whose heating rates are treated

explicitly elsewhere, to avoid double accounting. γchemr is a thermalisation efficiency of the reaction,

which is usually unknown, but the examples in the last section suggests that 1/3 might be a typical

value, even higher if the energy going into rotational and vibrational excitation of the products is

thermalised by collisions afterwards.

If the gas is hot, several 1000K, endothermic reactions consume energy to surmount the high

activation barriers involved into these reactions. These reactions, for example “collider” reactions,

cool the gas with high efficiency γchemr ≈1. This is automatically taken into account in Eq. (51) which

states the net heating rate = (heating − cooling) rate.

The chemical heating is yet another way to partially thermalise the energy of an incoming UV

photon, X-ray photon or a cosmic ray particle, through subsequent exothermic chemical reactions.

These reaction may take place a long time after the primary interaction took place. The chemical

heating, even with low efficiency γchem = 0.1, results to be an important heating process in protoplan-

etary disks, in particular at the bottom of the warm molecular layer where many of the near-mid IR

spectral lines are formed, and densities are of order 109 − 1013 cm−3.

9 Viscous Heating

Mass accretion onto the star implies a slow inward motion of the gas with velocity v(r, z) as

Ṁ(r) = 2πr
∫ +∞

−∞
ρ(r, z) v(r, z) dz . (53)

Let us study the energetic consequence of that slow inward motion, assuming that the gas stays on

close-to Keplerian orbits. For simplicity, we assume here that the mass accretion rate Ṁ(r) = const

throughout the disk, and we assume that the velocity does not depend on height z, i.e. v(r, z)= v(r), in
which case Eq. (53) simplifies as

Ṁ = 2πr Σ(r) v(r) . (54)

The gravitational potential energy per surface area of a small annulus [erg/cm2] positioned at radius

r, in the thin disk approximation, is given by

Epot(t) = −GM�Σ(r)
r

. (55)

During a small time interval dt, the position r of that annulus shrinks as r → r − v(r) dt, hence the

potential energy changes as

Epot(t + dt) = −GM�Σ(r)
r − v(r) dt

≈ −GM�Σ(r)
r2

(
r + v(r) dt

)
= Epot(t) − GM�

r2
Σ(r) v(r) dt (56)
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Now, using Σ(r)v(r) = Ṁ/(2πr) (Eq. 54), we find

dEpot

dt
= −GM�Ṁ

2πr3
(57)

On Keplerian orbits, the kinetic energy per surface area is

Ekin(t) =
1

2
Σ(r) v2Kep(r) =

1

2
Σ(r)

GM�
r

(58)

Assuming the gas to always quickly re-adjust to Keplerian velocities, we find

Ekin(t + dt) =
1

2
Σ(r)

GM�
r − v(r) dt

≈ 1

2
Σ(r)

GM�
r2

(
r + v(r) dt

)
= Ekin(t) +

1

2

GM�
r2

Σ(r) v(r) dt (59)

Hence,
dEkin

dt
= +

GM�Ṁ
4πr3

. (60)

Summing up the changes of potential and kinetic energies (Eqs. 57 and 60), it becomes clear that

Epot + Ekin must decrease if the gas is to move inwards on close-to Keplerian orbits. Where does that

liberated energy go? If the disk is isolated from the environment, we can assume Epot+Ekin+Etherm =

const, hence the net decrease of Epot + Ekin must be compensated for by an increase of the internal

energy of the gas in the annulus Etherm. An alternative way to understand this phenomenon is to realise

that the establishment of a new Keplerian orbit at a smaller radius r requires the action of a braking

force. In disk isolation, we need an internal force to do that job. How exactly this works in nature is

not clear, but the classical idea is to assume that a frictional force is at action, and to describe it like

a viscous force (Shakura & Syunyaev 1973). Therefore, the increase of Etherm is called the viscous
heating rate

d
dt

Etherm = −dEpot

dt
− dEkin

dt
=

GM�Ṁ
4πr3

. (61)

A more thorough derivation, using viscous evolution theory, is given in Armitage (2007). The differ-

ence is that Ṁ is actually not constant, and calibrated at the stellar surface (see Armitage 2007, their

Eqs. 65 and 71). Their result is

d
dt

Etherm =
3GM�Ṁ
8πr3

⎛⎜⎜⎜⎜⎜⎝1 −
√

R�
r

⎞⎟⎟⎟⎟⎟⎠ (62)

which differs by a factor of 2/3 from our simple derivation, times a meaningless factor if r � R�.
Equation (62) forms the basis of the d’Alessio disk models (D’Alessio et al. 1998). Note that in

Eq. (62) there is actually no dimensionless “alpha” viscosity αvis. The 1/r3-factor in Eq. (62) is im-

portant. It means that the inner disks of classical T Tauri stars, which have much smaller inner radii,

are much more affected by viscous heating as compared to Herbig Ae/Be stars.

Now, for 2D models, we need to turn this heating rate per column [erg/cm2/s] into a heating

rate per volume [erg/cm3/s], i.e. we need to make an assumption about how that total heating rate is

distributed within the column as function of height z. Let’s assume we choose

Γvis(r, z) =
3GM�Ṁ
8πr3

⎛⎜⎜⎜⎜⎜⎝1 −
√

R�
r

⎞⎟⎟⎟⎟⎟⎠ ρ p(r, z)∫
ρ p(r, z′)dz′

. (63)

where, obviously,
∫
Γvis(r, z) dz = d

dt Etherm. From linear theory of viscosity, p=1 would be suggested

(see e.g. Frank et al. 1992), but turbulent energy dissipation is not necessarily linear. Assuming p=1
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Figure 12. Leading heating and cooling processes as function of position (r, z) in the disk. The dashed black line
marks optical extinction AV =10.

leads to unstoppable heating for ρ→ 0 high above the disk midplane, because we then have a heating

rate Γ∝ρ whereas all cooling processes approach the non-LTE limit Λ∝ρ2. Instead, p=2 does work,

but contradicts the linear theory of viscosity.

A solution of this puzzle requires to understand and evaluate the viscosity behind the viscous

heating. If we assign the origin of the viscosity to the magneto-rotational instability (MRI), a detailed

treatment of non-ideal MHD effects (resistivity, ambipolar diffusion ...) based on the computed ioni-

sation degree in disks (Thi et al. 2015, in prep.) shows that the ambipolar diffusion reduces the heating

effect in very thin plasmas, in which case the above mentioned inconsistency does not occur.

10 Results

We conclude this chapter by looking at some results obtained by the ProDiMo code to a standard

TTauri disk model setup. The setup is designed such that the model predicts continuum and line

fluxes that roughly resemble the observations of real class II T Tauri stars (shape of SED, mm-flux

and slope, [OI] 63 μm line flux, etc.). The effective stellar temperature is chosen as Teff = 4000K,

and the stellar luminosity L� = 1 L�. These values correspond to spectral type K7, a stellar mass of

M� = 0.7 M� and an age of about 1.6 Myrs. For more details about this model setup, please study

http://www.diana-project.com/data-results-downloads/an-example-disc-model/.
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Figure 13. Vertical cuts at r = 1AU (l.h.s.) and r = 100AU (r.h.s.). The upper figures show the assumed

density profiles, and the calculated dust and gas temperature structures. The second and third rows show the most

important heating and cooling rates. Note that, at every point, the total heating rate equals the total cooling rate.
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Figure 12 gives an overview of the leading heating and cooling processes as function of radial and

vertical position in the disk. Figure 13 shows some more details in form of vertical cuts at 1AU and

100AU. We can roughly distinguish between three different vertical layers.

(i) The hot atomic layer: The top layer of the disk surface results to be extremely hot (Tgas >
10000K), an ionised plasma which is heated by X-rays, and cools via O III and Lyα line emission.

However, this region is so tenuous, that is doesn’t produce any observable line signatures, maybe

except for some [OI] 6300Å and [NeII] 12.82 μm emission.

(ii) The warm molecular layer: The vertical temperature and chemical disk structure, at any radius,

resembles an (X-ray) photo-dissociation region (PDR, X-PDR), see Fig. 13. As the incoming UV

and X-ray photons start to be absorbed (by dust and gas above, and by molecular self-shielding), first

molecules like H2 and CO can form, with H2O forming in slightly deeper layers. These molecules

introduce new and very strong line cooling functions which lead to an almost sudden decrease of

the gas temperature to a few 100K, or a few 10K, depending on radius. The cooling amplifies and

stabilises the molecule formation. The transition from the hot atomic to the warm molecular layer

can be very sudden, with gas temperatures being either a few 1000K or a few 100K (a few 10K),

but nothing in-between. In the warm molecular layer, UV driven heating processes, such as PAH

heating, chemical heating, neutral carbon photo-ionisation, and the heating processes involving H2

are balanced by line emission. The warm molecular layer is characterised by a very active photo

and X-ray chemistry (fast chemical relaxation) and elevated gas temperatures Tg > Td. It is mainly

responsible for the observable line emissions, in particular concerning the near-IR and mid-IR.

Figure 13 (see cooling plots at the bottom) allows for a direct estimate of where most of the line

emissions are generated, and which species are most important. At 1AU, a first peak of Qcool occurs at

z/r=0.28 (n〈H〉 ≈109 cm−3) due to ro-vibrational cooling of CO and H2O, just where these molecules

start to form. We receive ro-vibrational emission from the very top of the warm molecular layer. A
second maximum exists around z/r=0.23 (n〈H〉 ≈1011 cm−3) mainly due to rotational cooling by H2O.

At 100AU, [OI] 63 μm cooling dominates above the warm molecular layer, and rotational cooling

of CO and H2O are most important in the warm molecular layer. Since the cooling lines are typically

all optically thick, the emission region can be confined to a quite thin spatial zone characterised by

large temperature gradients, a numerical challenge. In fact, there is quite a distinctive maximum at

z/r=0.3 (n〈H〉 ≈107 cm−3).

(iii) The icy midplane: The third and deepest layer is reached when the optical extinction reaches

about AV = 10. No UV photons, and not much X-rays reach this region, and the gas temperature

equilibrates with the dust temperature through thermal accommodation, leading to Tg ≈ Td. At large

enough distances, where the midplane dust temperatures are sufficiently low, molecules freeze out

(forming in particular ices of H2O, CO, CO2, CH4 and NH3), which soon consume all available

oxygen, carbon, and nitrogen from the gas phase, leaving H2 as the only abundant molecule in the

distant midplane (Helling et al. 2014). This limiting case, however, is only reached for midplane dust

temperature ∼<20K, but also not too distant from the star where the disk becomes transparent to UV

radiation again, which prevents ice formation due to UV photo-desorption.

A further remarkable feature at smaller radii (see l.h.s. of Fig. 13) is that, at such large densities,

the heating/cooling behaviour of the gas becomes LTE-like just as in stellar atmospheres. There are

layers where CO ro-vib is both the most important heating and the most important cooling process, so

the gas is approximately in radiative equilibrium, as explained in Sect. 1.3, with respect to the CO line

opacities. Closer inspection shows that rather a combination of CO, H2O, HCN, CO2, NH3, CH4 and

C2H2 line opacities is what counts, just like in brown dwarf atmospheres (see e.g. Helling & Casewell

2014; Helling & Woitke 2006).
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Another interesting result is shown on the r.h.s. of Fig. 13. In the distant layers situated deep

enough, which are barely reached by any UV or X-rays, the line cooling (e.g. CO) is so effective that

it actually leads to Tgas < Tdust. Here, the gas is heated by thermal accommodation, and cools via line

emission.
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