We investigate the consequences of magnetic flares on the surface of
asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind,
in the winds of AGB stars the gas cooling time is much shorter than the outflow
time. As a result, we predict that energetic flaring will not inhibit, and may
even enhance, dust formation around AGB stars. If magnetic flares do occur
around such stars, we expect some AGB stars to exhibit X-ray emission; indeed
certain systems including AGB stars, such as Mira, have been detected in
X-rays. However, in these cases, it is difficult to distinguish between
potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity
of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira
system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature
10^7 K. These modeling results suggest that magnetic activity, either on the
AGB star (Mira A) or on its nearby companion (Mira B), is the source of the
X-rays, but do not rule out the possibility that the X-rays are generated by an
accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923