1,097 research outputs found

    Iron-absorption band analysis for the discrimination of iron-rich zones

    Get PDF
    There are no author-identified significant results in this report

    Structural geologic analysis of Nevada using ERTS-1 images: A preliminary report

    Get PDF
    Structural analysis of Nevada using ERTS-1 images showns several previously unrecognized lineaments which may be the surface manifestations of major fault or fracture zones. Principle trends are NE, NW, NNE-NNW, and ENE. Two lineament zones, the Walker Lane and Midas Trench lineament system, transect the predominantly NNE-NNW trending mountain ranges for more than 500 km. 50 circular features have been delineated. Comparison with known Tertiary volcanic centers and reference to geologic maps suggest 8 new centers. Preferred distribution of mines and Tertiary volcanic centers along some of the major lineament suggests a genetic relationship. The intersection of three previously unmapped lineaments in northwestern Nevada is the location of a highly productive metallogenic district. In the Walker Lane, ENE-trending lineament appear to be related to the occurrence of productive ore deposits

    An Investigation of Spelling Difficulties In The Elementary Grades

    Get PDF
    It is easy to observe errors in spelling, but difficult to understand why they exist. The problem of this thesis is an investigation of spelling difficulties in the elementary grades. More specifically the problem is a study of spelling errors in relation to a pupil\u27s spelling achievement; to record and classify the errors made end their frequency in grades two to eight inclusive ; also the variation in the percentage of spelling errors of each word in each test in any given grade as a means of grade placement for words in spell mg. Probably in few other elementary school subjects has there been as much experimental work done as in the field of spelling. Nevertheless, there is still need for further careful analysis and study of the problem of spelling in order that better results may be obtained

    Mapping of hydrothermal alternation zones and regional rock types using computer enhanced ERTS MSS images

    Get PDF
    A combination of digital computer processing and color compositing of ERTS MSS images has been used to map hydrothermal alternation zones and regional rock types in south-central Nevada. The technique is based on enhancement of subtle visible and near infrared reflectivity differences between mineralogically dissimilar rocks, especially unaltered and altered rocks. MSS spectral bands are ratioed, pixel by pixel, in the computer and subsequently stretched. These ratio values are used to produce a new black and white image which shows the subtle spectral reflectivity differences. Additional enhancement is achieved by preparing color composites of two or more stretched ratio images. The choice of MSS bands for rationing depends on the spectral reflectance properties of the rocks to be discriminated. Although this technique is in the initial stage of development and is untested in other areas, it already appears to have considerable potential for targeting mineral prospects and for regional geologic mapping

    Protein folding rates correlate with heterogeneity of folding mechanism

    Get PDF
    By observing trends in the folding kinetics of experimental 2-state proteins at their transition midpoints, and by observing trends in the barrier heights of numerous simulations of coarse grained, C-alpha model, Go proteins, we show that folding rates correlate with the degree of heterogeneity in the formation of native contacts. Statistically significant correlations are observed between folding rates and measures of heterogeneity inherent in the native topology, as well as between rates and the variance in the distribution of either experimentally measured or simulated phi-values.Comment: 11 pages, 3 figures, 1 tabl

    Native geometry and the dynamics of protein folding

    Full text link
    In this paper we investigate the role of native geometry on the kinetics of protein folding based on simple lattice models and Monte Carlo simulations. Results obtained within the scope of the Miyazawa-Jernigan indicate the existence of two dynamical folding regimes depending on the protein chain length. For chains larger than 80 amino acids the folding performance is sensitive to the native state's conformation. Smaller chains, with less than 80 amino acids, fold via two-state kinetics and exhibit a significant correlation between the contact order parameter and the logarithmic folding times. In particular, chains with N=48 amino acids were found to belong to two broad classes of folding, characterized by different cooperativity, depending on the contact order parameter. Preliminary results based on the G\={o} model show that the effect of long range contact interaction strength in the folding kinetics is largely dependent on the native state's geometry.Comment: Proceedings of the BIFI 2004 - I International Conference, Zaragoza (Spain) Biology after the genome: a physical view. To appear in Biophysical Chemistr

    Learning effective amino acid interactions through iterative stochastic techniques

    Full text link
    The prediction of the three-dimensional structures of the native state of proteins from the sequences of their amino acids is one of the most important challenges in molecular biology. An essential ingredient to solve this problem within coarse-grained models is the task of deducing effective interaction potentials between the amino acids. Over the years several techniques have been developed to extract potentials that are able to discriminate satisfactorily between the native and non-native folds of a pre-assigned protein sequence. In general, when these potentials are used in actual dynamical folding simulations, they lead to a drift of the native structure outside the quasi-native basin. In this study, we present and validate an approach to overcome this difficulty. By exploiting several numerical and analytical tools we set up a rigorous iterative scheme to extract potentials satisfying a pre-requisite of any viable potential: the stabilization of proteins within their native basin (less than 3-4 \AA cRMS). The scheme is flexible and is demonstrated to be applicable to a variety of parametrizations of the energy function and provides, in each case, the optimal potentials.Comment: Revtex 17 pages, 10 eps figures. Proteins: Structure, Function and Genetics (in press

    A Database of Domain Definitions for Proteins with Complex Interdomain Geometry

    Get PDF
    Protein structural domains are necessary for understanding evolution and protein folding, and may vary widely from functional and sequence based domains. Although, various structural domain databases exist, defining domains for some proteins is non-trivial, and definitions of their domain boundaries are not available. Here, we present a novel database of manually defined structural domains for a representative set of proteins from the SCOP “multi-domain proteins” class. (http://prodata.swmed.edu/multidom/). We consider our domains as mobile evolutionary units, which may rearrange during protein evolution. Additionally, they may be visualized as structurally compact and possibly independently folding units. We also found that representing domains as evolutionary and folding units do not always lead to a unique domain definition. However, unlike existing databases, we retain and refine these “alternate” domain definitions after careful inspection of structural similarity, functional sites and automated domain definition methods. We provide domain definitions, including actual residue boundaries, for proteins that well known databases like SCOP and CATH do not attempt to split. Our alternate domain definitions are suitable for sequence and structure searches by automated methods. Additionally, the database can be used for training and testing domain delineation algorithms. Since our domains represent structurally compact evolutionary units, the database may be useful for studying domain properties and evolution
    • …
    corecore