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Protein Folding Rates Correlate with Heterogeneity of Folding Mechanism
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By observing trends in the folding kinetics of experimental 2-state proteins at their transition
midpoints, and by observing trends in the barrier heights of numerous simulations of coarse-grained,
C� model Gō proteins, we show that folding rates correlate with the degree of heterogeneity in the
formation of native contacts. Statistically significant correlations are observed between folding rates
and measures of heterogeneity inherent in the native topology, as well as between rates and the variance
in the distribution of either experimentally measured or simulated � values.
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Protein folding is a relaxation process driven by a first-
order-like fluctuation of a critical nucleus [1]. Because
proteins are evolutionarily designed to fold to a particular
structure, frustrating interactions are minimized and the
folding process can be projected onto one or a few reac-
tion coordinates without too much loss of information [2].
This projection yields a free energy surface whose struc-
ture is subject to much interest.

What factors determine the height of the folding free
energy barrier for the various proteins? As one would
expect, the barrier decreases as the energetic stability of
the folded structure increases [3]. Moreover, folding rates
tend to increase with energetic discrimination measures
between the folded state and the unfolded or misfolded
decoys [4], indicating the importance of minimizing
frustration [2]. As one might also expect, the barrier
increases for native structures that have longer polymer
loops formed during folding. A property capturing this
effect, dubbed absolute contact order (ACO), measures
the mean sequence separation between amino acids in
close proximity (and thus interacting) in the native struc-
ture [5]: ACO � ‘ � �1=M�

P
i<jji� jj�N

ij, where i and j
label amino acid index, �N

ij � 1 (or 0) if amino acids i
and j are (or are not) interacting in the native structure,
and M is the total number of contacts in the native
structure determined by either heavy side chain atoms
or C� atoms within a cutoff distance of 4.8 Å [6].

In what follows, we first reexamine the trend of rates
with ‘ in light of theoretical predictions [7,8]; then we
will further examine higher-order aspects of native to-
pology (and energetics) that act as predictors of fold-
ing rate.

If we take data that first corrects for the effects of
differing native stabilities for different proteins by adjust-
ing denaturant concentration to conditions at the transi-
tion midpoint, and then plot the log folding rate vs ‘, we
find a statistically significant correlation for a represen-
tative set of 19 2-state proteins (and P13–14 circular per-
0031-9007=04=93(20)=208105(4)$22.50 
mutant of S6) [Fig. 1(a)] [9]. Observations similar to
this led the folding community to accept the idea that
properties of native topology strongly determine folding
rate [10]. Moreover, if one simulates off-lattice C� Gō
models [6] to 18 structures of known 2-state folders [11],
one also finds a statistically significant correlation be-
tween barrier height and absolute contact order
[Fig. 1(b)]. One also notices from Fig. 1 that there must
be more to the story then absolute contact order in deter-
mining folding rates, since the fluctuations around the
best fit line are significant.

The effects of native topology (and energetics) should
be describable analytically as well. To this end a free
energy functional approach was developed [7,8] within
which it was shown that the free energy barrier may be
written in terms of an expansion involving moments of
distributions of native contact interaction energies f
ijg,
and native contact sequence separations f‘ijg � fji� jjg.
The lowest order corrections to the mean-field barrier
are [8]
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where A, B, C are all positive and of order unity. The
lowest order mean-field term �Fz � �Fz�
; ‘�, where 
,
‘ are the first moments (mean) of the distributions, indeed
increases as ‘ increases, consistent with the observed
trend. The theory gives the slope mMF of the mean-field
barrier vs ‘ as [8] mMF � @���Fz=T�=@‘ 
 ��3=2��
�M=‘2� ln�‘1=2=2�. Calculating mMF for all proteins used
in Fig. 1(a) gives hmMFi � �0:41� 0:09, which is con-
sistent with the slope of the best fit line �0:36. The mean-
field slope for the proteins in Fig. 1(b) is �0:42� 0:08,
which is almost twice the slope of the best fit line �0:19.
A feasible explanation for these facts is that the degrees
of freedom are significantly reduced for simulations, and
many-body interactions are also neglected [12], both of
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FIG. 2. Plotted in (a) are log experimental rate data (at the
transition midpoints) and in (b), simulated barriers (at Tf), as a
function of the measure of structural heterogeneity that appears
in the functional theory in Eqs. (1) and (2). Both show a
moderate but statistically significant correlation with structural
variance [16]. Three �=� proteins (�-repressor chain 3, cyto-
chrome c, yeast iso-1-cytochrome c) tend to have both large
structural variance and fast folding rates.
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FIG. 1. (a) Logarithm of experimental folding rate (in sec�1)
at the transition midpoint vs absolute contact order or mean
sequence separation between interacting residues in the native
structure, ‘. (b) The equivalent measure in Gō simulations is
��Fz

sim=Tf (simulations are performed at the folding tempera-
ture Tf), again plotted vs ‘. Both show a statistically significant
anticorrelation: r (or �) is the correlation coefficient (or
Kendall’s tau). Statistical significance is defined here by the
probability P�r� [P���] to observe a given correlation coeffi-
cient or greater by chance. If P�r� [P���] <0:05, the dependence
is typically deemed statistically significant. Shown in (a) are 19
proteins, and P13–14 (�), a circular permutant of S6 (�) [13] for
which experimental rate data are available at various denatur-
ant concentrations [9], and in (b), 18 simulated Gō model
proteins [11].
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which reduce the slope in Fig. 1(b). Meanwhile, the above
theoretical estimates are taken only from the mean-field
term [first term in Eq. (1)], and so may overestimate bar-
riers, giving fortuitously good agreement in Fig. 1(a).
Inconsistencies between the slope of Fig. 1(b) and the
theoretical estimate also suggest that other factors in
addition to ‘ may be governing rates.

Second-order terms in Eq. (1) involving the fluctua-
tions of native energies and loop lengths contact-to-
contact all tend to decrease the barrier, leading to the
notion that proteins with more heterogeneous folding
mechanisms should fold faster [8]. We note that here a
more heterogeneous folding mechanism corresponds to a
more specific, polarized folding nucleus; i.e., the hetero-
geneity here refers to contact formation probability, not
conformational diversity of the transition state. Earlier
lattice-simulation studies (c.f. Abkevich et al. in [1]) as
well as more recent experimental studies of circular per-
208105-2
mutants [13] support the notion that a more polarized
nucleus results in a faster folding protein.

We can readily check if the second moment of the loop
length distribution has an observable effect on rates, even
if we ignore variations due to different ‘ values protein-
to-protein, as well as the terms with coefficients A and B
in Eq. (1). The functional theory gives coefficient C 
 Qz

in Eq. (1) [8], so the change in barrier height due to the
presence of structural variance is

��Fz � �Fz�=MT � ��Fz=MT 
 �Qz�‘2=‘2: (2)

Here, Q is the overall fraction of native contacts, and Qz

is the value of Q at the barrier peak.
Plots of experimental log folding rate and simulated

barrier heights (over MT) both show statistically signifi-
cant correlation with �‘2=‘2 (Fig. 2); however, there are
large fluctuations present, and the slope of the best fit line
is only about a tenth of the theoretical prediction.
Neglecting trends due to contact order and energetic
variance introduces large fluctuations.

Experimentally measured � values [14] involve both
energetics and entropics and should better capture the
effects of heterogeneity in folding mechanism. The vari-
208105-2
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ance in � values couples together the last three terms in
Eq. (1). To facilitate a comparison of rates with � vari-
ance, the free energy barrier may be recast in terms of the
variance in native contact formation probabilities (Qij)
[8]

��Fz=MT 
 ��Q2=2Qz: (3)

Equation (3) only includes the effects of heterogeneity
in polymer loop length; however, energetic heterogeneity
can be incorporated as well, which only changes the
coefficient �1=2Qz� in Eq. (3) to �3=2Qz�. The simula-
tions have no variance in native contact energies; more-
over, statistics arguments suggest that this native variance
may be significantly reduced with respect to the variance
in collapsed random structures [2].

� values may be defined analytically as [12,15] �i �P
j�i�Q

z
ij �QU

ij��
N
ij=

P
j�i�Q

F
ij �QU

ij��
N
ij, where QU

ij, Q
z
ij,

and QF
ij are the probabilities of native contact formation

between residues i and j in the unfolded, transition, and
folded states, respectively. It follows that in the approxi-
mation that all contacts are fully formed in the native
structure (QF � 1), and unformed in the unfolded struc-
tures (QU � 0), �i is the mean of Qij values in the
transition state. Further approximating the same number
of nearest neighbors z for all residues, the variances are
related by ��2 
 �1=z��Q2. If we make no approxima-
tions and simply plot �Q2 vs ��2 (for the simulation
data), the quantities correlate extremely well (see Table I)
with a slope of 
 1:2 and an intercept �0:04 .

The above arguments indicate �Q2 and ��2 are within
a factor of approximately unity, so we rewrite Eq. (3) in
the form

��Fz=MT 
 �D��2; (4)

with D a parameter of order unity. Thus more polarized
TABLE I. Correlation coefficient and statistical significance
for various quantities.

y versus: x r P�r�a � P���a

ln�kf� ‘ �0:69 9� 10�4 �0:46 5:3� 10�3

��Fz
sim=Tf ‘ �0:71 10�3 �0:61 4� 10�4

ln�kf�=M
b ��2

exp 0.78 2:8� 10�3 0.52 2� 10�2

��Fz
sim=MTf ��2

sim 0.67 2:3� 10�3 0.47 7:2� 10�3

ln�kf�=M �‘2=‘2 0.62 6:6� 10�3 0.48 5:7� 10�3

��Fz
sim=MTf �‘2=‘2 0.53 2:7� 10�2 0.36 3:7� 10�2

‘ �‘2=‘2c
�0:14 0.52 �0:07 0.7

‘ ��2
exp �0:64 2:5� 10�2 �0:43 5:5� 10�2

‘ ��2
sim 0.16 0.52 0.15 0.38

��2
sim �‘2=‘2 0.71 10�3 0.32 6:4� 10�2

��2
exp �‘2=‘2 0.29 0.37 0.18 0.41

��2
exp ��2

sim �0:16 0.8 0.2 0.63
��2

sim �Q2
sim 0.94 <10�6 0.77 9� 10�6

aTwo-sided statistical significance has been used.
bHere we divide by the number of native contacts M. Dividing
instead by chain length N gives correlations within 10%. M and
N correlate very strongly (r � 0:94).
cData from both simulated and experimental proteins used.
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nuclei have lower free energy barriers. Plots of ��Fz=
MT vs ��2 for experiments and simulations are shown in
Fig. 3. Here we see a strong statistically significant corre-
lation of both rates and barriers with � variance. More-
over, the slopes of the best fit lines (
0:3) compare some-
what more favorably with the theoretically predicted
values (
0:8) than was the case for structural variance.
A precise comparison with experimental data is more
difficult since the coordination number z as well as the
numbers QU and QF are not accurately known for all
proteins. Taking the slope from Fig. 3(a) and using the
approximations mentioned above allows us to infer the
residue-residue coordination number: z 
 4 if energetic
heterogeneity is negligible [Eq. (3)], and z 
 11 if it is
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FIG. 3. (a) Plots of log experimental folding rate (over M) for
a subset of proteins in Fig. 1(a) for which experimental �
values are available. (b) Minus free energy barrier (over MT)
for simulated proteins vs � variance. Both show strong statis-
tically significant correlation. In particular, the trend in ex-
perimental data is strong even though the number of proteins
with available data for both � variance and transition midpoint
rate is not large. Experimental data for wild type S6 (�) and a
circular permutant P13–14 (�) [13] fit very well to the rest of the
data and increase the correlation. The strong correlation re-
mains upon dividing by chain length N instead of total num-
ber of contacts M. Here the experimental rates at the tran-
sition midpoint have been compared to the variance in �’s
typically measured in water or stabilizing conditions. Error
bars in the experimental data are obtained by assuming a
typical error of �� � 0:05 for each � value [9], giving
����2� 
 2

���������
��2

p
��=

����
m

p
, where m is the number of data

points (� values) for each protein.
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substantial [Eq. (3) with coefficient 3=2Qz]. Residuals of
��Fz=MT vs ‘, when plotted against �‘2=‘2 and ��2,
show comparable correlations (within 10%) of those in
Figs. 2 and 3.

Interestingly, experimental folding mechanisms tend
to be more polarized than uniform Gō models (abscissae
in Fig. 3). In the case of the simulations, the correlation
between ��2 vs �‘2=‘2 is strong as expected, since there
is no variance in native contact energies, by construction
of the model. For experimental data, however, the corre-
lation is poor, implying that there may be substantial
energetic heterogeneity present in native contact energies
of real proteins. It is not too surprising, then, that there is
no correlation between the variance of experimental �
values and simulation � values (see Table I). Thus in the
analysis, simulated barriers were plotted against simu-
lated � variance, and experimental rates were plotted
against experimental � variance. We note that including
S6 and its permutant does not change the correlation in
Fig. 3(a), but decreases the correlation in Fig. 1(a) by 8%.

We did not find any significant correlation between
rates and structural variance �‘2=‘2 for 3-state folders.
Here there is the intriguing picture that (on-pathway)
intermediates in 3-state folders are in fact induced by
structural or energetic heterogeneity, so that there is no
a priori reason for folding rates to continue to increase
with increasing heterogeneity.

We showed here that both experimental rates and simu-
lated free energy barriers for 2-state proteins depend on
the degree of heterogeneity present in the folding process.
The results compared quite well with the predictions of
the free energy functional theory [8]. Heterogeneity due
to variance in the distribution of native loop lengths, as
well as variance in the distribution of � values, were both
seen to increase folding rates and reduce folding barriers.
The observed effect due � variance was the most statis-
tically significant (as expected), because � variance cap-
tures both heterogeneity arising from native topology as
well as that arising from energetics.
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