400 research outputs found

    Planning and designing for recreation: Cruickshank Bend on Melton Hill Lake

    Get PDF
    In recent years much emphasis has been placed on the development of recreational facilities for utilization of leisure time by federal, state and local governments. The American citizen has expanded his demands for recreational activities from the two week vacation to the entire year. Non-working time has expanded until we now find it possible, and often desirable, to make use of some recreational facilities daily. Increases in disposable income, population growth, and mobility have emphasized the need for new, expanded, and well planned facilities. Adequate planning for the rapid changes that have taken place has been difficult. Many efforts are now being made to correct existing deficiencies and plan for the future. While planning alone will not eliminate mistakes and conflicts, it will reduce them to a much smaller magnitude than if no planning takes place at all. Thorough planning for the most effective utilization of land, space, and facilities is a prerequisite to the development of a successful recreation outlet (17). Other features which must be incorporated into a successful recreational outlet include safety, comfort, convenience, and pleasing appearance. All of these features help to determine the benefits and pleasures received by a user of the facilities, and the experiences that will be remembered after the visit. If a park, playground, or resort is designed and planned for the people, all types of people, then we may expect a maximum benefit to the people. This thesis is concerned with the planning and design of a proposed park for Knox County on Melton Hill Lake, known as Cruickshank Bend. The major facilities were included after considering the standards and projected trends in recreation, and the desires of the people of Knox County as expressed by personnel of the Knox County Recreation Department, Metropolitan Planning Commission, and Tennessee Valley Authority

    Junior Achievement - BizTown Translations into Spanish

    Get PDF

    HLA-B-associated transcript 3 (Bat3/Scythe) negatively regulates Smad phosphorylation in BMP signaling

    Get PDF
    Members of the transforming growth factor-β (TGF-β) superfamily participate in numerous biological phenomena in multiple tissues, including in cell proliferation, differentiation, and migration. TGF-β superfamily proteins therefore have prominent roles in wound healing, fibrosis, bone formation, and carcinogenesis. However, the molecular mechanisms regulating these signaling pathways are not fully understood. Here, we describe the regulation of bone morphogenic protein (BMP) signaling by Bat3 (also known as Scythe or BAG6). Bat3 overexpression in murine cell lines suppresses the activity of the Id1 promoter normally induced by BMP signaling. Conversely, Bat3 inactivation enhances the induction of direct BMP target genes, such as Id1, Smad6, and Smad7. Consequently, Bat3 deficiency accelerates the differentiation of primary osteoblasts into bone, with a concomitant increase in the bone differentiation markers Runx2, Osterix, and alkaline phosphatase. Using biochemical and cell biological analyses, we show that Bat3 inactivation sustains the C-terminal phosphorylation and nuclear localization of Smad1, 5, and 8 (Smad1/5/8), thereby enhancing biological responses to BMP treatment. At the mechanistic level, we show that Bat3 interacts with the nuclear phosphatase small C-terminal domain phosphatase (SCP) 2, which terminates BMP signaling by dephosphorylating Smad1/5/8. Notably, Bat3 enhances SCP2–Smad1 interaction only when the BMP signaling pathway is activated. Our results demonstrate that Bat3 is an important regulator of BMP signaling that functions by modulating SCP2–Smad interaction

    The National Lung Matrix Trial: translating the biology of stratification in advanced non-small-cell lung cancer

    Get PDF
    © The Author 2015.Background: The management of NSCLC has been transformed by stratified medicine. The National Lung Matrix Trial (NLMT) is a UK-wide study exploring the activity of rationally selected biomarker/targeted therapy combinations. Patients and methods: The Cancer Research UK (CRUK) Stratified Medicine Programme 2 is undertaking the large volume national molecular pre-screening which integrates with the NLMT. At study initiation, there are eight drugs being used to target 18 molecular cohorts. The aim is to determine whether there is sufficient signal of activity in any drug-biomarker combination to warrant further investigation. A Bayesian adaptive design that gives a more realistic approach to decision making and flexibility to make conclusions without fixing the sample size was chosen. The screening platform is an adaptable 28-gene Nextera next-generation sequencing platform designed by Illumina, covering the range of molecular abnormalities being targeted. The adaptive design allows new biomarker-drug combination cohorts to be incorporated by substantial amendment. The pre-clinical justification for each biomarker-drug combination has been rigorously assessed creating molecular exclusion rules and a trumping strategy in patients harbouring concomitant actionable genetic abnormalities. Discrete routes of pathway activation or inactivation determined by cancer genome aberrations are treated as separate cohorts. Key translational analyses include the deep genomic analysis of pre- and post-treatment biopsies, the establishment of patient-derived xenograft models and longitudinal ctDNA collection, in order to define predictive biomarkers, mechanisms of resistance and early markers of response and relapse. Conclusion: The SMP2 platform will provide large scale genetic screening to inform entry into the NLMT, a trial explicitly aimed at discovering novel actionable cohorts in NSCLC

    Aurora kinase A drives the evolution of resistance to third-generation EGFR inhibitors in lung cancer.

    Get PDF
    Although targeted therapies often elicit profound initial patient responses, these effects are transient due to residual disease leading to acquired resistance. How tumors transition between drug responsiveness, tolerance and resistance, especially in the absence of preexisting subclones, remains unclear. In epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells, we demonstrate that residual disease and acquired resistance in response to EGFR inhibitors requires Aurora kinase A (AURKA) activity. Nongenetic resistance through the activation of AURKA by its coactivator TPX2 emerges in response to chronic EGFR inhibition where it mitigates drug-induced apoptosis. Aurora kinase inhibitors suppress this adaptive survival program, increasing the magnitude and duration of EGFR inhibitor response in preclinical models. Treatment-induced activation of AURKA is associated with resistance to EGFR inhibitors in vitro, in vivo and in most individuals with EGFR-mutant lung adenocarcinoma. These findings delineate a molecular path whereby drug resistance emerges from drug-tolerant cells and unveils a synthetic lethal strategy for enhancing responses to EGFR inhibitors by suppressing AURKA-driven residual disease and acquired resistance

    A Novel, Non-Apoptotic Role for Scythe/BAT3: A Functional Switch between the Pro- and Anti-Proliferative Roles of p21 during the Cell Cycle

    Get PDF
    BACKGROUND: Scythe/BAT3 is a member of the BAG protein family whose role in apoptosis has been extensively studied. However, since the developmental defects observed in Bat3-null mouse embryos cannot be explained solely by defects in apoptosis, we investigated whether BAT3 is also involved in cell-cycle progression. METHODS/PRINCIPAL FINDINGS: Using a stable-inducible Bat3-knockdown cellular system, we demonstrated that reduced BAT3 protein level causes a delay in both G1/S transition and G2/M progression. Concurrent with these changes in cell-cycle progression, we observed a reduction in the turnover and phosphorylation of the CDK inhibitor p21, which is best known as an inhibitor of DNA replication; however, phosphorylated p21 has also been shown to promote G2/M progression. Our findings indicate that in Bat3-knockdown cells, p21 continues to be synthesized during cell-cycle phases that do not normally require p21, resulting in p21 protein accumulation and a subsequent delay in cell-cycle progression. Finally, we showed that BAT3 co-localizes with p21 during the cell cycle and is required for the translocation of p21 from the cytoplasm to the nucleus during the G1/S transition and G2/M progression. CONCLUSION: Our study reveals a novel, non-apoptotic role for BAT3 in cell-cycle regulation. By maintaining a low p21 protein level during the G1/S transition, BAT3 counteracts the inhibitory effect of p21 on DNA replication and thus enables the cells to progress from G1 to S phase. Conversely, during G2/M progression, BAT3 facilitates p21 phosphorylation by cyclin A/Cdk2, an event required for G2/M progression. BAT3 modulates these pro- and anti-proliferative roles of p21 at least in part by regulating cyclin A abundance, as well as p21 translocation between the cytoplasm and the nucleus to ensure that it functions in the appropriate intracellular compartment during each phase of the cell cycle.Dissertatio

    The Anti-Apoptotic Activity of BAG3 Is Restricted by Caspases and the Proteasome

    Get PDF
    Caspase-mediated cleavage and proteasomal degradation of ubiquitinated proteins are two independent mechanisms for the regulation of protein stability and cellular function. We previously reported BAG3 overexpression protected ubiquitinated clients, such as AKT, from proteasomal degradation and conferred cytoprotection against heat shock. We hypothesized that the BAG3 protein is regulated by proteolysis. caspase-resistant mutant. Caspase and proteasome inhibition resulted in partial and independent protection of BAG3 whereas inhibitors of both blocked BAG3 degradation. STS-induced apoptosis was increased when BAG3 was silenced, and retention of BAG3 was associated with cytoprotection.BAG3 is tightly controlled by selective degradation during STS exposure. Loss of BAG3 under STS injury required sequential caspase cleavage followed by polyubiquitination and proteasomal degradation. The need for dual regulation of BAG3 in apoptosis suggests a key role for BAG3 in cancer cell resistance to apoptosis

    Liquid Biopsy in Non-Small Cell Lung Cancer (NSCLC)

    Get PDF
    Lung cancer is the leading cause of cancer deaths worldwide. To date, the gold standard for the molecular analysis of a patient affected by NSCLC is the tissue biopsy. The discovery of activating mutations and rearrangements in specific genes has revolutionized the therapeutic approaches of lung cancer over the last years. For this reason, a strict \u201cmolecular follow-up\u201d is mandatory to evaluate patient\u2019s disease evolution. Indeed, liquid biopsy has raised as the \u201cnew ambrosia of researchers\u201d as it could help clinicians to identify both prognostic and predictive biomarkers in a more accessible way. Liquid biopsy analysis can be used in different moments starting from diagnosis to relapse, earning multiple clinical meanings, offering thus a noninvasive but valid method to detect actionable mutations. Although the implementation of both exosomes and CTCs in clinical practice is several steps back, new advances and discoveries make them, together with the ctDNA, a very promising tool. In the following chapter we will discuss the recent advances of liquid biopsy in NSCLC highlighting the possible clinical utility of CTCs, ctDNA and exosomes
    corecore