116 research outputs found

    PORTAL INFORMASI PELAYANAN CALON JAMAAH HAJI BERBASIS WEB PADA KEMENTERIAN AGAMA KABUPATEN SAMBAS

    Get PDF
    The Ministry of Religion of the Sambas Regency is a Vertical Agency of the Ministry of Religion domiciled in the Regency. One of the tasks of the Ministry of Religion of Sambas Regency is to provide services, guidance and guidance in the field of Hajj and Umrah. For services at the Ministry of Religion of Sambas Regency to prospective pilgrims, it is still not effective and efficient. The method used is Prototype with the stages of collecting requirements, building prototyping, evaluating prototyping, coding the system, testing the system, evaluating the system, and using the system. The Web-Based Information Portal for Prospective Hajj Pilgrims Services at the Ministry of Religion of Sambas Regency is built with functionalities according to user needs, namely: information on the schedule of Hajj rituals, information on Hajj travel schedules, information on estimated Hajj departures, information on material for Hajj rituals, information on data for prospective pilgrims, information health data of prospective pilgrims, message information and report information

    Reading aloud boosts connectivity through the putamen

    Get PDF
    Functional neuroimaging and lesion studies have frequently reported thalamic and putamen activation during reading and speech production. However, it is currently unknown how activity in these structures interacts with that in other reading and speech production areas. This study investigates how reading aloud modulates the neuronal interactions between visual recognition and articulatory areas, when both the putamen and thalamus are explicitly included. Using dynamic causal modeling in skilled readers who were reading regularly spelled English words, we compared 27 possible pathways that might connect the ventral anterior occipito-temporal sulcus (aOT) to articulatory areas in the precentral cortex (PrC). We focused on whether the neuronal interactions within these pathways were increased by reading relative to picture naming and other visual and articulatory control conditions. The results provide strong evidence that reading boosts the aOT–PrC pathway via the putamen but not the thalamus. However, the putamen pathway was not exclusive because there was also evidence for another reading pathway that did not involve either the putamen or the thalamus. We conclude that the putamen plays a special role in reading but this is likely to vary with individual reading preferences and strategies

    Abnormally increased effective connectivity between parahippocampal gyrus and ventromedial prefrontal regions during emotion labeling in bipolar disorder

    Get PDF
    Emotional liability and mood dysregulation characterize bipolar disorder (BD), yet no study has examined effective connectivity between parahippocampal gyrus and prefrontal cortical regions in ventromedial and dorsal/lateral neural systems subserving mood regulation in BD. Participants comprised 46 individuals (age range: 18-56 years): 21 with a DSM-IV diagnosis of BD, type I currently remitted; and 25 age- and gender-matched healthy controls (HC). Participants performed an event-related functional magnetic resonance imaging paradigm, viewing mild and intense happy and neutral faces. We employed dynamic causal modeling (DCM) to identify significant alterations in effective connectivity between BD and HC. Bayes model selection was used to determine the best model. The right parahippocampal gyrus (PHG) and right subgenual cingulate gyrus (sgCG) were included as representative regions of the ventromedial neural system. The right dorsolateral prefrontal cortex (DLPFC) region was included as representative of the dorsal/lateral neural system. Right PHG-sgCG effective connectivity was significantly greater in BD than HC, reflecting more rapid, forward PHG-sgCG signaling in BD than HC. There was no between-group difference in sgCG-DLPFC effective connectivity. In BD, abnormally increased right PHG-sgCG effective connectivity and reduced right PHG activity to emotional stimuli suggest a dysfunctional ventromedial neural system implicated in early stimulus appraisal, encoding and automatic regulation of emotion that may represent a pathophysiological functional neural mechanism for mood dysregulation in BD

    Non-verbal sound processing in the primary progressive aphasias

    Get PDF
    Little is known about the processing of non-verbal sounds in the primary progressive aphasias. Here, we investigated the processing of complex non-verbal sounds in detail, in a consecutive series of 20 patients with primary progressive aphasia [12 with progressive non-fluent aphasia; eight with semantic dementia]. We designed a novel experimental neuropsychological battery to probe complex sound processing at early perceptual, apperceptive and semantic levels, using within-modality response procedures that minimized other cognitive demands and matching tests in the visual modality. Patients with primary progressive aphasia had deficits of non-verbal sound analysis compared with healthy age-matched individuals. Deficits of auditory early perceptual analysis were more common in progressive non-fluent aphasia, deficits of apperceptive processing occurred in both progressive non-fluent aphasia and semantic dementia, and deficits of semantic processing also occurred in both syndromes, but were relatively modality specific in progressive non-fluent aphasia and part of a more severe generic semantic deficit in semantic dementia. Patients with progressive non-fluent aphasia were more likely to show severe auditory than visual deficits as compared to patients with semantic dementia. These findings argue for the existence of core disorders of complex non-verbal sound perception and recognition in primary progressive aphasia and specific disorders at perceptual and semantic levels of cortical auditory processing in progressive non-fluent aphasia and semantic dementia, respectively

    Brain regions essential for improved lexical access in an aged aphasic patient: a case report

    Get PDF
    BACKGROUND: The relationship between functional recovery after brain injury and concomitant neuroplastic changes is emphasized in recent research. In the present study we aimed to delineate brain regions essential for language performance in aphasia using functional magnetic resonance imaging and acquisition in a temporal sparse sampling procedure, which allows monitoring of overt verbal responses during scanning. CASE PRESENTATION: An 80-year old patient with chronic aphasia (2 years post-onset) was investigated before and after intensive language training using an overt picture naming task. Differential brain activation in the right inferior frontal gyrus for correct word retrieval and errors was found. Improved language performance following therapy was mirrored by increased fronto-thalamic activation while stability in more general measures of attention/concentration and working memory was assured. Three healthy age-matched control subjects did not show behavioral changes or increased activation when tested repeatedly within the same 2-week time interval. CONCLUSION: The results bear significance in that the changes in brain activation reported can unequivocally be attributed to the short-term training program and a language domain-specific plasticity process. Moreover, it further challenges the claim of a limited recovery potential in chronic aphasia, even at very old age. Delineation of brain regions essential for performance on a single case basis might have major implications for treatment using transcranial magnetic stimulation

    A Network Analysis Approach to fMRI Condition-Specific Functional Connectivity

    Full text link
    In this work we focus on examination and comparison of whole-brain functional connectivity patterns measured with fMRI across experimental conditions. Direct examination and comparison of condition-specific matrices is challenging due to the large number of elements in a connectivity matrix. We present a framework that uses network analysis to describe condition-specific functional connectivity. Treating the brain as a complex system in terms of a network, we extract the most relevant connectivity information by partitioning each network into clusters representing functionally connected brain regions. Extracted clusters are used as features for predicting experimental condition in a new data set. The approach is illustrated on fMRI data examining functional connectivity patterns during processing of abstract and concrete concepts. Topological (brain regions) and functional (level of connectivity and information flow) systematic differences in the ROI-based functional networks were identified across participants for concrete and abstract concepts. These differences were sufficient for classification of previously unseen connectivity matrices as abstract or concrete based on training data derived from other people

    Sensory and cognitive mechanisms of change detection in the context of speech

    Get PDF
    The aim of this study was to dissociate the contributions of memory-based (cognitive) and adaptation-based (sensory) mechanisms underlying deviance detection in the context of natural speech. Twenty healthy right-handed native speakers of English participated in an event-related design scan in which natural speech stimuli, /de:/ (“deh”) and /deI/ (“day”); (/te:/ (“teh”) and /teI/ (“tay”) served as standards and deviants within functional magnetic resonance imaging event-related “oddball” paradigm designed to elicit the mismatch negativity component. Thus, “oddball” blocks could involve either a word deviant (“day”) resulting in a “word advantage” effect, or a non-word deviant (“deh” or “tay”). We utilized an experimental protocol controlling for refractoriness similar to that used previously when deviance detection was studied in the context of tones. Results showed that the cognitive and sensory mechanisms of deviance detection were located in the anterior and posterior auditory cortices, respectively, as was previously found in the context of tones. The cognitive effect, that was most robust for the word deviant, diminished in the “oddball” condition. In addition, the results indicated that the lexical status of the speech stimulus interacts with acoustic factors exerting a top-down modulation of the extent to which novel sounds gain access to the subject’s awareness through memory-based processes. Thus, the more salient the deviant stimulus is the more likely it is to be released from the effects of adaptation exerted by the posterior auditory cortex

    Using resting-state DMN effective connectivity to characterize the neurofunctional architecture of empathy

    Get PDF
    Neuroimaging studies in social neuroscience have largely relied on functional connectivity (FC) methods to characterize the functional integration between different brain regions. However, these methods have limited utility in social-cognitive studies that aim to understand the directed information flow among brain areas that underlies complex psychological processes. In this study we combined functional and effective connectivity approaches to characterize the functional integration within the Default Mode Network (DMN) and its role in self-perceived empathy. Forty-two participants underwent a resting state fMRI scan and completed a questionnaire of dyadic empathy. Independent Component Analysis (ICA) showed that higher empathy scores were associated with an increased contribution of the medial prefrontal cortex (mPFC) to the DMN spatial mode. Dynamic causal modelling (DCM) combined with Canonical Variance Analysis (CVA) revealed that this association was mediated indirectly by the posterior cingulate cortex (PCC) via the right inferior parietal lobule (IPL). More specifically, in participants with higher scores in empathy, the PCC had a greater effect on bilateral IPL and the right IPL had a greater influence on mPFC. These results highlight the importance of using analytic approaches that address directed and hierarchical connectivity within networks, when studying complex psychological phenomena, such as empathy.- This study was funded by BIAL Foundation (Grant number 87/12); by the Portuguese Foundation for Science and Technology and the Portuguese Ministry of Education and Science through national funds and co-financed by FEDER through COMPETE2020 under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007653); by the postdoctoral scholarship UMINHO/BPD/18/2017 and by the Portuguese Foundation for Science Doctoral scholarship (PD/BD/105963/2014). This work was conducted at Psychology Research Centre (UID/PSI/01662/2013), University of Minho
    corecore