5 research outputs found

    Application of electron paramagnetic resonance spectroscopy in the study of albumin conformational changes by spin-labeling method

    Get PDF
    БСрумски Π°Π»Π±ΡƒΠΌΠΈΠ½ јС Π½Π°Ρ˜Π·Π°ΡΡ‚ΡƒΠΏΡ™Π΅Π½ΠΈΡ˜ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ Ρƒ ΠΊΡ€Π²Π½ΠΎΡ˜ ΠΏΠ»Π°Π·ΠΌΠΈ, који ΠΈΠΌΠ° вишС Π²Π°ΠΆΠ½ΠΈΡ… Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΡˆΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°, Π·Π±ΠΎΠ³ Ρ‡Π΅Π³Π° јС Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°Π½ Ρ€Π°Π·Π½ΠΈΠΌ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ°ΠΌΠ°. ЈСдна ΠΎΠ΄ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈΡ… Π·Π° ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ΅ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° Π°Π»Π±ΡƒΠΌΠΈΠ½Π° ΠΈ њСговог ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π° Π·Π° вСзивањС Ρ€Π°Π·Π½ΠΈΡ… ΡΡƒΠΏΡΡ‚Π°Π½Ρ†ΠΈΡ˜Π° јС СлСктронска ΠΏΠ°Ρ€Π°ΠΌΠ°Π³Π½Π΅Ρ‚Π½Π° Ρ€Π΅Π·ΠΎΠ½Π°Π½Ρ‚Π½Π° (Π•ΠŸΠ ) ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΠΈΡ˜Π° Ρƒ спрСзи са спинским обСлСТавањСм. Π£ Ρ‚Ρƒ сврху јС ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΎ Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… спинских ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Π°, ΠΌΠ΅Ρ’Ρƒ којима су спински ΠΎΠ±Π΅Π»Π΅ΠΆΠ΅Π½Π΅ маснС кисСлинС, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° јС Π°Π»Π±ΡƒΠΌΠΈΠ½ Π³Π»Π°Π²Π½ΠΈ транспортСр масних кисСлина. Π”Ρ€ΡƒΠ³ΠΈ чСсто ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡ јС 3-ΠΌΠ°Π»Π΅ΠΈΠΌΠΈΠ΄ΠΎ проксил (5-ΠœΠ‘Π›) који сС ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎ Π²Π΅Π·ΡƒΡ˜Π΅ Π·Π° слободан цистСин. Π£ овој Π΄ΠΎΠΊΡ‚ΠΎΡ€ΡΠΊΠΎΡ˜ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Π΄Π²Π΅ спински ΠΎΠ±Π΅Π»Π΅ΠΆΠ΅Π½Π΅ стСаринскС кисСлинС којС садрТС ΠΏΠ°Ρ€Π°ΠΌΠ°Π³Π½Π΅Ρ‚Π½Ρƒ доксил Π³Ρ€ΡƒΠΏΡƒ (Π³Ρ€ΡƒΠΏΠ° ΠΎΠ΄ којС ΠΏΠΎΡ‚ΠΈΡ‡Π΅ Π•ΠŸΠ  сигнал) Π½Π° ΠΏΠ΅Ρ‚ΠΎΠΌ (5-доксил стСаринска кисСлина, 5-Π”Π‘) ΠΈ Π½Π° ΡˆΠ΅ΡΠ½Π°Π΅ΡΡ‚ΠΎΠΌ (16-доксил стСаринска кисСлина, 16-Π”Π‘) ΡƒΠ³Ρ™Π΅Π½ΠΈΠΊΠΎΠ²ΠΎΠΌ Π°Ρ‚ΠΎΠΌΡƒ мСтилСнског Π»Π°Π½Ρ†Π° су ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½Π΅ Π·Π° ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ΅ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° Ρƒ Ρ…ΡƒΠΌΠ°Π½ΠΎΠΌ сСрумском Π°Π»Π±ΡƒΠΌΠΈΠ½Ρƒ (Π₯БА). Осим Ρ‚ΠΎΠ³Π°, ΠΊΠΎΠ½Ρ„ΠΎΠΌΠ°Ρ†ΠΈΠΎΠ½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Ρƒ Π³ΠΎΠ²Π΅Ρ’Π΅ΠΌ сСрумском Π°Π»Π±ΡƒΠΌΠΈΠ½Ρƒ (ББА) су ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°Π½Π΅ обСлСТавањСм ББА са 5-ΠœΠ‘Π›. ΠšΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ су Π±ΠΈΠ»Π΅ ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°Π½Π΅ Π²Π°Ρ€ΠΈΡ€Π°ΡšΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ pH, додавањСм Π΅Ρ‚Π°Π½ΠΎΠ»Π°, вСзивањСм Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Π»ΠΈΠ³Π°Π½Π°Π΄Π° Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΈΡ… Π·Π° Π°Π»Π±ΡƒΠΌΠΈΠ½ (маснС кисСлинС ΠΈ Π»Π΅ΠΊΠΎΠ²ΠΈ) ΠΈ излагањСм Π΄Π΅Ρ˜ΡΡ‚Π²Ρƒ Ρ˜Π°ΠΊΠΈΡ… ΠΎΠΊΡΠΈΠ΄ΡƒΡ˜ΡƒΡ›ΠΈΡ… агСнаса, Π²ΠΎΠ΄ΠΎΠ½ΠΈΠΊ-пСроксиду ΠΈ супСроксидном анјонском Ρ€Π°Π΄ΠΈΠΊΠ°Π»Ρƒ. Π”ΠΎΠ΄Π°Ρ‚Π½ΠΈ Ρ†ΠΈΡ™ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ јС Π±ΠΈΠΎ Π΄Π° сС испита Π΄Π° Π»ΠΈ 5-ΠœΠ‘Π› ΠΌΠΎΠΆΠ΅ Π΄Π° сС користи Π·Π° Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Ρƒ суптилних ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° ΡƒΠ·Ρ€ΠΎΠΊΠΎΠ²Π°Π½ΠΈΡ… вСзивањСм Π»ΠΈΠ³Π°Π½Π°Π΄Π°, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° сС 5-ΠœΠ‘Π› Π½Π°Π»Π°Π·ΠΈ Ρƒ Ρ€ΠΈΠ³ΠΈΠ΄Π½ΠΎΡ˜ срСдини ΠΊΠ°Π΄Π° сС Π²Π΅ΠΆΠ΅ Π·Π° јСдини слободан цистСин Ρƒ Π‘Π‘A који сС Π½Π°Π»Π°Π·ΠΈ Π½Π° ΠΏΠΎΠ·ΠΈΡ†ΠΈΡ˜ΠΈ 34 Ρƒ аминокисСлинској ΡΠ΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΠΈ (Cys-34). Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ Π΄Π° су доксил Π³Ρ€ΡƒΠΏΠ΅ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Π° 5-Π”Π‘ ΠΈ 16-Π”Π‘ (којС Π΄Π°Ρ˜Ρƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ ΠΏΡ€ΠΎΠΌΠ΅Π½Π°ΠΌa Ρƒ својој ΠΎΠΊΠΎΠ»ΠΈΠ½ΠΈ), Π»ΠΎΡ†ΠΈΡ€Π°Π½Π΅ Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ мСстима Ρƒ Π₯БА. НаимС, доксил Π³Ρ€ΡƒΠΏΠ° 5-Π”Π‘ сС Π½Π°Π»Π°Π·ΠΈ Ρƒ Ρ…ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½ΠΎΡ˜ ΡƒΠ½ΡƒΡ‚Ρ€Π°ΡˆΡšΠΎΡΡ‚ΠΈ Π₯БА, Π΄ΠΎΠΊ јС Π·Π° 16-Π”Π‘ Π»ΠΎΡ†ΠΈΡ€Π°Π½Π° Π±Π»ΠΈΠ·Ρƒ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½Π΅ Π₯БА ΠΈΠ»ΠΈ Ρ‡Π°ΠΊ ΠΏΡ€ΠΎΠ»Π°Π·ΠΈ ΠΊΡ€ΠΎΠ· ΡšΡƒ. Π‘Ρ‚ΠΎΠ³Π°, ΠΎΠ²Π° Π΄Π²Π° јСдињСња Π΄Π°Ρ˜Ρƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… мСста Π½Π° ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρƒ Π₯БА. Π’Π°ΠΊΠΎΡ’Π΅ јС ΡƒΠΎΡ‡Π΅Π½ΠΎ Π΄Π° Π•ΠŸΠ  спСктри ΠΎΠ±Π° Π”Π‘ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Π° Π²Π΅Π·Π°Π½ΠΈΡ… Π·Π° Π₯БА ΠΌΠΎΠ³Ρƒ Π΄Π° сС Ρ€Π°Π·Π»ΠΎΠΆΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π΅ којС ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜Ρƒ јако (ΠˆΠ’), слабо Π²Π΅Π·Π°Π½ΠΎΠΌ (Π‘Π’) ΠΈ Π½Π΅Π²Π΅Π·Π°Π½ΠΎΠΌ (НВ) ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Ρƒ. Π—Π° 5-ΠœΠ‘Π› Π²Π΅Π·Π°Π½ Π·Π° ББА, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ јС Π΄Π° сС Π•ΠŸΠ  спСктри ΡΠ°ΡΡ‚ΠΎΡ˜Π΅ ΠΈΠ· Π΄Π²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π΅, ΠˆΠ’ ΠΈ Π‘Π’, којС ΠΏΠΎΡ‚ΠΈΡ‡Ρƒ ΠΎΠ΄ 5-ΠœΠ‘Π› Π²Π΅Π·Π°Π½ΠΎΠ³ Π·Π° Cys-34 ΠΈ Π°ΠΌΠΈΠ½ΠΎ Π³Ρ€ΡƒΠΏΠ΅, рСспСктивно...Serum albumin is the most abundant blood plasma protein, which has been thoroughly studied using a plethora of techniques, due to its multiple important physiological roles. One of the methods used to monitor albumin conformational changes and binding capacity is electron paramagnetic resonance (EPR) spin-labeling methodology. For this purpose, albumin has been studied using various spin-labels, among which spin-labeled fatty acids have been the most commonly employed, since albumin is the main carrier of fatty acids. The other frequently used spin-label is 3- maleimido-proxyl (5-MSL) which binds covalently to the free cysteine residues. In this doctoral dissertation, two spin-labeled stearic acids containing a paramagnetic doxyl group (the EPR-active group) attached at fifth (5-doxyl-stearic acid, 5-DS) and sixteenth (16-doxyl stearic acid, 16-DS) carbon atom of the methylene chain, were used to study the conformational changes of human serum albumin (HSA). Furthermore, conformational changes of bovine serum albumin (BSA) were studied by labeling BSA with 5-MSL. The conformational changes were induced by varying temperature and pH, addition of ethanol, binding several typical ligands (fatty acids and drugs) and exposure to strong oxidizing agents, hydrogen peroxide and superoxide anion radical. The additional goal of this dissertation was to reveal whether 5-MSL can be used to track subtle conformational changes arising from ligand binding, since 5- MSL is located in the fairly rigid environment when bound to the single free cysteine residue in BSA, located at the position 34 in amino acid sequence (Cys-34). The results from this study show that the doxyl groups (group which reports the changes in its environment) of 5-DS and 16-DS, are located at different sites in HSA. Namely, doxyl group of 5-DS is located in the hydrophobic interior, while for 16-DS it is close to, or even protrudes the surface of HSA. Hence, these two compounds give information from the different locations in HSA molecule. It was also observed that EPR spectra of both DS spin-labels bound to HSA could be decomposed into components corresponding to the strongly (SB), weakly bound (WB) and unbound (UB) label. In case of 5-MSL bound to BSA, it was shown that the corresponding EPR spectra consist of SB and WB component which originate from 5-MSL bound to Cys-34 and amino groups, respectively..

    European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS).

    Get PDF
    The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed.The EU-ROS consortium (COST Action BM1203) was supported by the European Cooperation in Science and Technology (COST). The present overview represents the final Action dissemination summarizing the major achievements of COST Action BM1203 (EU-ROS) as well as research news and personal views of its members. Some authors were also supported by COST Actions BM1005 (ENOG) and BM1307 (PROTEOSTASIS), as well as funding from the European Commission FP7 and H2020 programmes, and several national funding agencies

    Application of electron paramagnetic resonance spectroscopy in the study of albumin conformational changes by spin-labeling method

    No full text
    БСрумски Π°Π»Π±ΡƒΠΌΠΈΠ½ јС Π½Π°Ρ˜Π·Π°ΡΡ‚ΡƒΠΏΡ™Π΅Π½ΠΈΡ˜ΠΈ ΠΏΡ€ΠΎΡ‚Π΅ΠΈΠ½ Ρƒ ΠΊΡ€Π²Π½ΠΎΡ˜ ΠΏΠ»Π°Π·ΠΌΠΈ, који ΠΈΠΌΠ° вишС Π²Π°ΠΆΠ½ΠΈΡ… Ρ„ΠΈΠ·ΠΈΠΎΠ»ΠΎΡˆΠΊΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†ΠΈΡ˜Π°, Π·Π±ΠΎΠ³ Ρ‡Π΅Π³Π° јС Π΄Π΅Ρ‚Π°Ρ™Π½ΠΎ ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°Π½ Ρ€Π°Π·Π½ΠΈΠΌ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ°ΠΌΠ°. ЈСдна ΠΎΠ΄ Ρ‚Π΅Ρ…Π½ΠΈΠΊΠ° ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈΡ… Π·Π° ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ΅ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° Π°Π»Π±ΡƒΠΌΠΈΠ½Π° ΠΈ њСговог ΠΊΠ°ΠΏΠ°Ρ†ΠΈΡ‚Π΅Ρ‚Π° Π·Π° вСзивањС Ρ€Π°Π·Π½ΠΈΡ… ΡΡƒΠΏΡΡ‚Π°Π½Ρ†ΠΈΡ˜Π° јС СлСктронска ΠΏΠ°Ρ€Π°ΠΌΠ°Π³Π½Π΅Ρ‚Π½Π° Ρ€Π΅Π·ΠΎΠ½Π°Π½Ρ‚Π½Π° (Π•ΠŸΠ ) ΡΠΏΠ΅ΠΊΡ‚Ρ€ΠΎΡΠΊΠΎΠΏΠΈΡ˜Π° Ρƒ спрСзи са спинским обСлСТавањСм. Π£ Ρ‚Ρƒ сврху јС ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΎ Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… спинских ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Π°, ΠΌΠ΅Ρ’Ρƒ којима су спински ΠΎΠ±Π΅Π»Π΅ΠΆΠ΅Π½Π΅ маснС кисСлинС, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° јС Π°Π»Π±ΡƒΠΌΠΈΠ½ Π³Π»Π°Π²Π½ΠΈ транспортСр масних кисСлина. Π”Ρ€ΡƒΠ³ΠΈ чСсто ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½ΠΈ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡ јС 3-ΠΌΠ°Π»Π΅ΠΈΠΌΠΈΠ΄ΠΎ проксил (5-ΠœΠ‘Π›) који сС ΠΊΠΎΠ²Π°Π»Π΅Π½Ρ‚Π½ΠΎ Π²Π΅Π·ΡƒΡ˜Π΅ Π·Π° слободан цистСин. Π£ овој Π΄ΠΎΠΊΡ‚ΠΎΡ€ΡΠΊΠΎΡ˜ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜ΠΈ Π΄Π²Π΅ спински ΠΎΠ±Π΅Π»Π΅ΠΆΠ΅Π½Π΅ стСаринскС кисСлинС којС садрТС ΠΏΠ°Ρ€Π°ΠΌΠ°Π³Π½Π΅Ρ‚Π½Ρƒ доксил Π³Ρ€ΡƒΠΏΡƒ (Π³Ρ€ΡƒΠΏΠ° ΠΎΠ΄ којС ΠΏΠΎΡ‚ΠΈΡ‡Π΅ Π•ΠŸΠ  сигнал) Π½Π° ΠΏΠ΅Ρ‚ΠΎΠΌ (5-доксил стСаринска кисСлина, 5-Π”Π‘) ΠΈ Π½Π° ΡˆΠ΅ΡΠ½Π°Π΅ΡΡ‚ΠΎΠΌ (16-доксил стСаринска кисСлина, 16-Π”Π‘) ΡƒΠ³Ρ™Π΅Π½ΠΈΠΊΠΎΠ²ΠΎΠΌ Π°Ρ‚ΠΎΠΌΡƒ мСтилСнског Π»Π°Π½Ρ†Π° су ΠΊΠΎΡ€ΠΈΡˆΡ›Π΅Π½Π΅ Π·Π° ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°ΡšΠ΅ ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° Ρƒ Ρ…ΡƒΠΌΠ°Π½ΠΎΠΌ сСрумском Π°Π»Π±ΡƒΠΌΠΈΠ½Ρƒ (Π₯БА). Осим Ρ‚ΠΎΠ³Π°, ΠΊΠΎΠ½Ρ„ΠΎΠΌΠ°Ρ†ΠΈΠΎΠ½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ Ρƒ Π³ΠΎΠ²Π΅Ρ’Π΅ΠΌ сСрумском Π°Π»Π±ΡƒΠΌΠΈΠ½Ρƒ (ББА) су ΠΏΡ€ΠΎΡƒΡ‡Π°Π²Π°Π½Π΅ обСлСТавањСм ББА са 5-ΠœΠ‘Π›. ΠšΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½Π΅ ΠΏΡ€ΠΎΠΌΠ΅Π½Π΅ су Π±ΠΈΠ»Π΅ ΠΈΠ½Π΄ΡƒΠΊΠΎΠ²Π°Π½Π΅ Π²Π°Ρ€ΠΈΡ€Π°ΡšΠ΅ΠΌ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ ΠΈ pH, додавањСм Π΅Ρ‚Π°Π½ΠΎΠ»Π°, вСзивањСм Π½Π΅ΠΊΠΎΠ»ΠΈΠΊΠΎ Π»ΠΈΠ³Π°Π½Π°Π΄Π° Ρ‚ΠΈΠΏΠΈΡ‡Π½ΠΈΡ… Π·Π° Π°Π»Π±ΡƒΠΌΠΈΠ½ (маснС кисСлинС ΠΈ Π»Π΅ΠΊΠΎΠ²ΠΈ) ΠΈ излагањСм Π΄Π΅Ρ˜ΡΡ‚Π²Ρƒ Ρ˜Π°ΠΊΠΈΡ… ΠΎΠΊΡΠΈΠ΄ΡƒΡ˜ΡƒΡ›ΠΈΡ… агСнаса, Π²ΠΎΠ΄ΠΎΠ½ΠΈΠΊ-пСроксиду ΠΈ супСроксидном анјонском Ρ€Π°Π΄ΠΈΠΊΠ°Π»Ρƒ. Π”ΠΎΠ΄Π°Ρ‚Π½ΠΈ Ρ†ΠΈΡ™ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ јС Π±ΠΈΠΎ Π΄Π° сС испита Π΄Π° Π»ΠΈ 5-ΠœΠ‘Π› ΠΌΠΎΠΆΠ΅ Π΄Π° сС користи Π·Π° Π΄Π΅Ρ‚Π΅ΠΊΡ†ΠΈΡ˜Ρƒ суптилних ΠΊΠΎΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΎΠ½ΠΈΡ… ΠΏΡ€ΠΎΠΌΠ΅Π½Π° ΡƒΠ·Ρ€ΠΎΠΊΠΎΠ²Π°Π½ΠΈΡ… вСзивањСм Π»ΠΈΠ³Π°Π½Π°Π΄Π°, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° Ρ‚ΠΎ Π΄Π° сС 5-ΠœΠ‘Π› Π½Π°Π»Π°Π·ΠΈ Ρƒ Ρ€ΠΈΠ³ΠΈΠ΄Π½ΠΎΡ˜ срСдини ΠΊΠ°Π΄Π° сС Π²Π΅ΠΆΠ΅ Π·Π° јСдини слободан цистСин Ρƒ Π‘Π‘A који сС Π½Π°Π»Π°Π·ΠΈ Π½Π° ΠΏΠΎΠ·ΠΈΡ†ΠΈΡ˜ΠΈ 34 Ρƒ аминокисСлинској ΡΠ΅ΠΊΠ²Π΅Π½Ρ†ΠΈΡ˜ΠΈ (Cys-34). Π Π΅Π·ΡƒΠ»Ρ‚Π°Ρ‚ΠΈ ΠΎΠ²Π΅ Π΄ΠΈΡΠ΅Ρ€Ρ‚Π°Ρ†ΠΈΡ˜Π΅ ΠΏΠΎΠΊΠ°Π·ΡƒΡ˜Ρƒ Π΄Π° су доксил Π³Ρ€ΡƒΠΏΠ΅ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Π° 5-Π”Π‘ ΠΈ 16-Π”Π‘ (којС Π΄Π°Ρ˜Ρƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ ΠΎ ΠΏΡ€ΠΎΠΌΠ΅Π½Π°ΠΌa Ρƒ својој ΠΎΠΊΠΎΠ»ΠΈΠ½ΠΈ), Π»ΠΎΡ†ΠΈΡ€Π°Π½Π΅ Π½Π° Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΠΌ мСстима Ρƒ Π₯БА. НаимС, доксил Π³Ρ€ΡƒΠΏΠ° 5-Π”Π‘ сС Π½Π°Π»Π°Π·ΠΈ Ρƒ Ρ…ΠΈΠ΄Ρ€ΠΎΡ„ΠΎΠ±Π½ΠΎΡ˜ ΡƒΠ½ΡƒΡ‚Ρ€Π°ΡˆΡšΠΎΡΡ‚ΠΈ Π₯БА, Π΄ΠΎΠΊ јС Π·Π° 16-Π”Π‘ Π»ΠΎΡ†ΠΈΡ€Π°Π½Π° Π±Π»ΠΈΠ·Ρƒ ΠΏΠΎΠ²Ρ€ΡˆΠΈΠ½Π΅ Π₯БА ΠΈΠ»ΠΈ Ρ‡Π°ΠΊ ΠΏΡ€ΠΎΠ»Π°Π·ΠΈ ΠΊΡ€ΠΎΠ· ΡšΡƒ. Π‘Ρ‚ΠΎΠ³Π°, ΠΎΠ²Π° Π΄Π²Π° јСдињСња Π΄Π°Ρ˜Ρƒ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΡ˜Π΅ са Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΡ‚ΠΈΡ… мСста Π½Π° ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρƒ Π₯БА. Π’Π°ΠΊΠΎΡ’Π΅ јС ΡƒΠΎΡ‡Π΅Π½ΠΎ Π΄Π° Π•ΠŸΠ  спСктри ΠΎΠ±Π° Π”Π‘ ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Π° Π²Π΅Π·Π°Π½ΠΈΡ… Π·Π° Π₯БА ΠΌΠΎΠ³Ρƒ Π΄Π° сС Ρ€Π°Π·Π»ΠΎΠΆΠ΅ Π½Π° ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π΅ којС ΠΎΠ΄Π³ΠΎΠ²Π°Ρ€Π°Ρ˜Ρƒ јако (ΠˆΠ’), слабо Π²Π΅Π·Π°Π½ΠΎΠΌ (Π‘Π’) ΠΈ Π½Π΅Π²Π΅Π·Π°Π½ΠΎΠΌ (НВ) ΠΎΠ±Π΅Π»Π΅ΠΆΠΈΠ²Π°Ρ‡Ρƒ. Π—Π° 5-ΠœΠ‘Π› Π²Π΅Π·Π°Π½ Π·Π° ББА, ΠΏΠΎΠΊΠ°Π·Π°Π½ΠΎ јС Π΄Π° сС Π•ΠŸΠ  спСктри ΡΠ°ΡΡ‚ΠΎΡ˜Π΅ ΠΈΠ· Π΄Π²Π΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚Π΅, ΠˆΠ’ ΠΈ Π‘Π’, којС ΠΏΠΎΡ‚ΠΈΡ‡Ρƒ ΠΎΠ΄ 5-ΠœΠ‘Π› Π²Π΅Π·Π°Π½ΠΎΠ³ Π·Π° Cys-34 ΠΈ Π°ΠΌΠΈΠ½ΠΎ Π³Ρ€ΡƒΠΏΠ΅, рСспСктивно...Serum albumin is the most abundant blood plasma protein, which has been thoroughly studied using a plethora of techniques, due to its multiple important physiological roles. One of the methods used to monitor albumin conformational changes and binding capacity is electron paramagnetic resonance (EPR) spin-labeling methodology. For this purpose, albumin has been studied using various spin-labels, among which spin-labeled fatty acids have been the most commonly employed, since albumin is the main carrier of fatty acids. The other frequently used spin-label is 3- maleimido-proxyl (5-MSL) which binds covalently to the free cysteine residues. In this doctoral dissertation, two spin-labeled stearic acids containing a paramagnetic doxyl group (the EPR-active group) attached at fifth (5-doxyl-stearic acid, 5-DS) and sixteenth (16-doxyl stearic acid, 16-DS) carbon atom of the methylene chain, were used to study the conformational changes of human serum albumin (HSA). Furthermore, conformational changes of bovine serum albumin (BSA) were studied by labeling BSA with 5-MSL. The conformational changes were induced by varying temperature and pH, addition of ethanol, binding several typical ligands (fatty acids and drugs) and exposure to strong oxidizing agents, hydrogen peroxide and superoxide anion radical. The additional goal of this dissertation was to reveal whether 5-MSL can be used to track subtle conformational changes arising from ligand binding, since 5- MSL is located in the fairly rigid environment when bound to the single free cysteine residue in BSA, located at the position 34 in amino acid sequence (Cys-34). The results from this study show that the doxyl groups (group which reports the changes in its environment) of 5-DS and 16-DS, are located at different sites in HSA. Namely, doxyl group of 5-DS is located in the hydrophobic interior, while for 16-DS it is close to, or even protrudes the surface of HSA. Hence, these two compounds give information from the different locations in HSA molecule. It was also observed that EPR spectra of both DS spin-labels bound to HSA could be decomposed into components corresponding to the strongly (SB), weakly bound (WB) and unbound (UB) label. In case of 5-MSL bound to BSA, it was shown that the corresponding EPR spectra consist of SB and WB component which originate from 5-MSL bound to Cys-34 and amino groups, respectively..

    European contribution to the study of ROS:a summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS)

    No full text
    Abstract The European Cooperation in Science and Technology (COST) provides an ideal framework to establish multi-disciplinary research networks. COST Action BM1203 (EU-ROS) represents a consortium of researchers from different disciplines who are dedicated to providing new insights and tools for better understanding redox biology and medicine and, in the long run, to finding new therapeutic strategies to target dysregulated redox processes in various diseases. This report highlights the major achievements of EU-ROS as well as research updates and new perspectives arising from its members. The EU-ROS consortium comprised more than 140 active members who worked together for four years on the topics briefly described below. The formation of reactive oxygen and nitrogen species (RONS) is an established hallmark of our aerobic environment and metabolism but RONS also act as messengers via redox regulation of essential cellular processes. The fact that many diseases have been found to be associated with oxidative stress established the theory of oxidative stress as a trigger of diseases that can be corrected by antioxidant therapy. However, while experimental studies support this thesis, clinical studies still generate controversial results, due to complex pathophysiology of oxidative stress in humans. For future improvement of antioxidant therapy and better understanding of redox-associated disease progression detailed knowledge on the sources and targets of RONS formation and discrimination of their detrimental or beneficial roles is required. In order to advance this important area of biology and medicine, highly synergistic approaches combining a variety of diverse and contrasting disciplines are needed
    corecore