250 research outputs found

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 1. Concepts for Understanding and Applying Restoration

    Get PDF
    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of restoration techniques for sage-grouse habitat restoration. We conclude with a description of the critical nature of monitoring for adaptive management of sagebrush steppe restoration at landscape- and project-specific levels

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 3. Site Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations. When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps. ●Step 1 describes the process of defining site-level restoration objectives. ●Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting. ●Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models. ●Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success. ●Step 5 is a brief discussion of how weather before and after treatments may impact restoration success. ●Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage-grouse. We discuss when passive restoration options may be sufficient and when active restoration may be necessary to achieve restoration objectives. ●Step 7 addresses decisions regarding post-restoration livestock grazing management. ●Step 8 addresses monitoring of the restoration; we discuss important aspects associated with implementation monitoring as well as effectiveness monitoring. ●Step 9 takes the information learned from monitoring to determine how restoration actions in the future might be adapted to improve restoration success

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 2. Landscape Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. Land managers do not have resources to restore all locations because of the extent of the restoration need and because some land uses are not likely to change, therefore, restoration decisions made at the landscape to regional scale may improve the effectiveness of restoration to achieve landscape and local restoration objectives. We present a landscape restoration decision tool intended to assist decision makers in determining landscape objectives, to identify and prioritize landscape areas where sites for priority restoration projects might be located, and to aid in ultimately selecting restoration sites guided by criteria used to define the landscape objectives. The landscape restoration decision tool is structured in five sections that should be addressed sequentially. Each section has a primary question or statement followed by related questions and statements to assist the user in addressing the primary question or statement. This handbook will guide decision makers through the important process steps of identifying appropriate questions, gathering appropriate data, developing landscape objectives, and prioritizing landscape patches where potential sites for restoration projects may be located. Once potential sites are selected, land managers can move to the site-specific decision tool to guide restoration decisions at the site level

    A REGIONAL EXPERIMENT TO EVALUATE EFFECTS OF FIRE AND FIRE SURROGATE TREATMENTS IN THE SAGEBRUSH BIOME

    Get PDF
    SageSTEP is a comprehensive regional experiment that provides critical information to managers faced with a sagebrush steppe ecosystem that is increasingly at risk from wildfire, invasive plants, and climate change. The experiment provides managers with information that can be used to restore ecological communities across the 100+ million acres of the sagebrush biome. It is designed to match the temporal and spatial scales at which managers operate, is intended to reduce management risk and uncertainty of catastrophic wildfire to the greatest degree possible, and provides managers with information that allows them to better understand tradeoffs inherent in the choice of management alternatives. The project has several features that make it ideal for testing hypotheses from state‐andtransition theory, and for discovering information that can be directly applied in a management context ‐‐ it is long‐term, experimental, multisite, multivariate, and treatments are applied across condition gradients, allowing for potential identification of biotic thresholds. The project is designed to distinguish communities that have conditions that will allow them to recover on their own following fuel or restoration treatments, versus communities that have crossed biotic thresholds, and will therefore require more expensive active restoration. SageSTEP is designed as a long‐term study, such that measurements are planned for at least 10 years after treatment implementation, or through the 2018 field season. This final report therefore describes the short‐term effects of treatments, 2‐4 years after treatment implementation., or through the 2010 field season. The Joint Fire Science Program generously funded SageSTEP for its first six years, and this funding was crucial for building an infrastructure that has now set the stage for an unprecedented long‐term study that will provide badly needed information on sagebrush steppe restoration and fuel treatment effectiveness. The infrastructure we’ve built consists of the following eight features: 1. A network of 18 sites distributed across the Great Basin, Snake River Basin, and Columbia Basin, 11 sites in a replicated woodland experiment, and 7 sites in a replicated sage‐cheat experiment (Figure 1). Each site is equivalent to a statistical block consisting of an unmanipulated control, and a set of fire and fire surrogate treatments. 2. A network of weather and soil moisture stations distributed along with the sites, that provides information on inter‐annual and geographic variation in moisture and temperature, and that is being used to interpret patterns of ecological response. 3. A small by efficient staff, consisting of scientists and technicians, responsible for continued monitoring of ecological variables through time, and maintenance of the projects’ infrastructure. 4. A funding stream from several agency sources, with current resources adequate to run the project for at least three more years, and with agreements in place to fund the project through fiscal year 2015. 5. A web of partnerships among managers, scientists, students, stakeholders, and policymakers that has worked together to design the study, implement the treatments, and learn about how sagebrush steppe system respond to alternative restoration treatments. 6. A highly effective and influential outreach program, anchored by a popular website, designed to interpret and deliver scientific information collected by SageSTEP scientists, and to distribute other relevant information originating from outside the project. 7. An on‐line database, called the SageSTEP Data Store, that offers fully proofed and validated data to analysts working within SageSTEP, and which will eventually provide the same information to other interested users. 8. The Great Basin NEON Site, NSF’s atmospheric sampling station that will soon be built at the SageSTEP Onaqui site. This link with NSF provides SageSTEP with leverage for established additional vegetation and soil monitoring facilities at Onaqui. Over the past three years, since post‐treatment data collection commenced, SageSTEP has produced a considerable amount of information, most of it now published in a total of 32 scientific papers. Key outreach products include: ● Active web site (sagestep.org), anchoring a comprehensive outreach program ● User\u27s Guides for Western Juniper & Pinyon‐Juniper woodlands ● Two Fuel Guides, one each for pre‐treatment and post‐treatment conditions ● 15 quarterly newsletters ● Six manager workshops ● 11 tours or field trips ● Three national conference symposia, consisting of 24 papers (2 symposia planned) ● 57 contributed papers at conferences ● Seven Master’s Theses and two Ph.D. Dissertations ● 15 papers published in proceedings or reports ● Ten papers published in peer‐reviewed journals (17 papers currently in review

    Quantitative Assessment of Desertification Using Landsat Data on a Regional Scale – A Case Study in the Ordos Plateau, China

    Get PDF
    Desertification is a serious threat to the ecological environment and social economy in our world and there is a pressing need to develop a reasonable and reproducible method to assess it at different scales. In this paper, the Ordos Plateau in China was selected as the research region and a quantitative method for desertification assessment was developed by using Landsat MSS and TM/ETM+ data on a regional scale. In this method, NDVI, MSDI and land surface albedo were selected as assessment indicators of desertification to represent land surface conditions from vegetation biomass, landscape pattern and micrometeorology. Based on considering the effects of vegetation type and time of images acquired on assessment indictors, assessing rule sets were built and a decision tree approach was used to assess desertification of Ordos Plateau in 1980, 1990 and 2000. The average overall accuracy of three periods was higher than 90%. The results showed that although some local places of Ordos Plateau experienced an expanding trend of desertification, the trend of desertification of Ordos Plateau was an overall decrease in from 1980 to 2000. By analyzing the causes of desertification processes, it was found that climate change could benefit for the reversion of desertification from 1980 to 1990 at a regional scale and human activities might explain the expansion of desertification in this period; however human conservation activities were the main driving factor that induced the reversion of desertification from 1990 to 2000

    From endogenous to exogenous pattern formation: Invasive plant species changes the spatial distribution of a native ant

    Full text link
    Invasive species are a significant threat to global biodiversity, but our understanding of how invasive species impact native communities across space and time remains limited. Based on observations in an old field in Southeast Michigan spanning 35 years, our study documents significant impacts of habitat change, likely driven by the invasion of the shrub, Elaeagnus umbellata, on the nest distribution patterns and population demographics of a native ant species, Formica obscuripes. Landcover change in aerial photographs indicates that E. umbellata expanded aggressively, transforming a large proportion of the original open field into dense shrubland. By comparing the ant’s landcover preferences before and after the invasion, we demonstrate that this species experienced a significant unfavorable change in its foraging areas. We also find that shrub landcover significantly moderates aggression between nests, suggesting nests are more related where there is more E. umbellata. This may represent a shift in reproductive strategy from queen flights, reported in the past, to asexual nest budding. Our results suggest that E. umbellata may affect the spatial distribution of F. obscuripes by shifting the drivers of nest pattern formation from an endogenous process (queen flights), which led to a uniform pattern, to a process that is both endogenous (nest budding) and exogenous (loss of preferred habitat), resulting in a significantly different clustered pattern. The number and sizes of F. obscuripes nests in our study site are projected to decrease in the next 40 years, although further study of this population’s colony structures is needed to understand the extent of this decrease. Elaeagnus umbellata is a common invasive shrub, and similar impacts on native species might occur in its invasive range, or in areas with similar shrub invasions.Invasive species are a threat to global biodiversity, but our understanding of how they impact native communities across space and time remains limited. We compared the spatial distribution of a population of native ant Formica obscuripes in SE Michigan between 1980 and 2015, during which the invasive shrub Elaeagnus umbellata changed the dominant landcover from open field to shrubland. Analyses of ant habitat preference and aggressivity suggest that this landcover change caused the nest pattern formation process to shift from endogenous (reproductive queen flights) that led to a uniform pattern, to both endogenous (nest budding) and exogenous (loss of preferred habitat), resulting in a significantly different clustered pattern. Results of a stage‐structured model suggest that the ant population may be declining. Elaeagnus umbellata is a common invasive shrub, and similar impacts on native species might occur in its invasive range, or in areas with similar shrub invasions.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136690/1/gcb13671.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136690/2/gcb13671_am.pd

    Hospital outpatient perceptions of the physical environment of waiting areas: the role of patient characteristics on atmospherics in one academic medical center

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study examines hospital outpatient perceptions of the physical environment of the outpatient waiting areas in one medical center. The relationship of patient characteristics and their perceptions and needs for the outpatient waiting areas are also examined.</p> <p>Method</p> <p>The examined medical center consists of five main buildings which house seventeen primary waiting areas for the outpatient clinics of nine medical specialties: 1) Internal Medicine; 2) Surgery; 3) Ophthalmology; 4) Obstetrics-Gynecology and Pediatrics; 5) Chinese Medicine; 6) Otolaryngology; 7) Orthopedics; 8) Family Medicine; and 9) Dermatology. A 15-item structured questionnaire was developed to rate patient satisfaction covering the four dimensions of the physical environments of the outpatient waiting areas: 1) visual environment; 2) hearing environment; 3) body contact environment; and 4) cleanliness. The survey was conducted between November 28, 2005 and December 8, 2005. A total of 680 outpatients responded. Descriptive, univariate, and multiple regression analyses were applied in this study.</p> <p>Results</p> <p>All of the 15 items were ranked as relatively high with a range from 3.362 to 4.010, with a neutral score of 3. Using a principal component analysis' summated scores of four constructed dimensions of patient satisfaction with the physical environments (i.e. visual environment, hearing environment, body contact environment, and cleanliness), multiple regression analyses revealed that patient satisfaction with the physical environment of outpatient waiting areas was associated with gender, age, visiting frequency, and visiting time.</p> <p>Conclusion</p> <p>Patients' socio-demographics and context backgrounds demonstrated to have effects on their satisfaction with the physical environment of outpatient waiting areas. In addition to noticing the overall rankings for less satisfactory items, what should receive further attention is the consideration of the patients' personal characteristics when redesigning more comfortable and customized physical environments of waiting areas.</p

    THE RATE OF BINARY BLACK HOLE MERGERS INFERRED FROM ADVANCED LIGO OBSERVATIONS SURROUNDING GW150914

    Get PDF
    A transient gravitational-wave signal, GW150914, was identi fi ed in the twin Advanced LIGO detectors on 2015 September 2015 at 09:50:45 UTC. To asse ss the implications of this discovery, the detectors remained in operation with unchanged con fi gurations over a period of 39 days around the time of t he signal. At the detection statistic threshold corresponding to that observed for GW150914, our search of the 16 days of simultaneous two-detector observational data is estimated to have a false-alarm rate ( FAR ) of < ́ -- 4.9 10 yr 61 , yielding a p -value for GW150914 of < ́ - 210 7 . Parameter estimation follo w-up on this trigger identi fi es its source as a binary black hole ( BBH ) merger with component masses ( )( ) = - + - + mm M ,36,29 12 4 5 4 4 at redshift = - + z 0.09 0.04 0.03 ( median and 90% credible range ) . Here, we report on the constraints these observations place on the rate of BBH coalescences. Considering only GW150914, assuming that all BBHs in the universe have the same masses and spins as this event, imposing a search FAR threshold of 1 per 100 years, and assuming that the BBH merger rate is constant in the comoving frame, we infer a 90% credible range of merger rates between – -- 2 53 Gpc yr 31 ( comoving frame ) . Incorporating all search triggers that pass a much lower threshold while accounting for the uncerta inty in the astrophysical origin of each trigger, we estimate a higher rate, ranging from – -- 13 600 Gpc yr 31 depending on assumptions about the BBH mass distribution. All together, our various rate estimat es fall in the conservative range – -- 2 600 Gpc yr 31
    corecore