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Abstract

Multimodal data is rapidly growing in many fields of science and engineering,
including single-cell biology. We introduce MultiMAP, a novel algorithm for
dimensionality reduction and integration. MultiMAP can integrate any number of
datasets, leverages features not present in all datasets, is not restricted to a linear
mapping, allows the user to specify the influence of each dataset, and is extremely
scalable to large datasets. We apply MultiMAP to single-cell transcriptomics,
chromatin accessibility, methylation, and spatial data and show that it outperforms
current approaches. On a new thymus dataset, we use MultiMAP to integrate cells
along a temporal trajectory. This enables quantitative comparison of transcription
factor expression and binding site accessibility over the course of T cell
differentiation, revealing patterns of expression versus binding site opening kinetics.

Background
Multimodal data is rapidly growing in single-cell biology and many other fields of sci-

ence and engineering. Emerging single-cell technologies are providing high-resolution

measurements of different features of cellular identity, including single-cell assays for

gene expression, protein abundance [1, 2], chromatin accessibility [3], DNA methyla-

tion [4], and spatial resolution [5]. Large-scale collaborations, including the Human

Cell Atlas international consortium [6, 7], are generating an exponentially increasing

amount of data, using these technologies. Each technology provides a unique view of

cellular biology and has different strengths and weaknesses. Integrating these measure-

ments to study a single biological system will open avenues for a more comprehensive

view of cellular identity, cell-cell interactions, developmental dynamics, and tissue

structure [8].

The integration of multi-omic data poses several challenges [9]. Different omics tech-

nologies measure distinct unmatched features with different underlying distributions

and properties and hence produce data of different dimensionality. This makes it diffi-

cult to place data from different omics in the same feature space. Additionally, omics
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technologies can also have different noise and batch characteristics which are challen-

ging to identify and correct. Furthermore, as multi-omic data grows along two axes, the

number of cells per omic and the number of omics per study, integration strategies

need to be extremely scalable.

Most data integration methods project multiple measurements of information into a

common low-dimensional representation to assemble multiple modalities into an inte-

grated embedding space. Recently published methods employ different algorithms to

project multiple datasets into an embedding space, including canonical correlation ana-

lysis (CCA) [10], nonnegative matrix factorization (NMF) [11, 12], or neural network

models [13]. These methods have demonstrated utility, yet suffer from shortcomings,

including challenges with scaling and being limited to consideration of features shared

across data sets (e.g., the same genes). A further drawback is that methods that use lin-

ear models, such as CCA and NMF, are unable to capture nonlinear differences be-

tween datasets.

Here we introduce a new method that overcomes all these limitations: MultiMAP, an

algorithm for the dimensionality reduction and integration of multiple datasets.

MultiMAP integrates data by constructing a nonlinear manifold on which diverse high-

dimensional data reside and then projecting the manifold and data into a shared low-

dimensional embedding space (Fig. 1). MultiMAP generalizes the UMAP algorithm

[14] to the setting of multiple datasets with different dimensions, while implementing

novel techniques for estimating the manifold, constructing a joint graph on the mani-

fold, and optimizing the low-dimensional embedding to account for the limitations and

the challenges of multimodal and multi-omic data. In contrast to other integration

strategies for single-cell data, MultiMAP can integrate any number of datasets, is not

restricted to a linear mapping, leverages features that are not present in all datasets

Fig. 1 Schematic of MultiMAP. a MultiMAP takes any number of datasets, including those of differing
dimensions, recovers geodesic distances on a single latent manifold on which all data lie, constructs a
neighborhood graph (MultiGraph) on the manifold, and then projects the data into a single low-
dimensional embedding. Integrated analysis and visualization can be performed on the embedding or
graph. Variables are discussed in Methods. Xi is dataset i, xj

i is a point in Xi, M is the shared manifold, B(xi
2)

is a ball on M centered at xi
2, Xij is the ambient space of M in the coordinate space with data containing

points from datasets i and j, gij is the metric of M in the space Xij, μ is the membership function of the fuzzy
simplicial set on the manifold, ν is the membership function of the fuzzy simplicial set in the low-
dimensional space. b In the field of cell atlas technologies, encompassing single-cell genomics and spatial
technologies, MultiMAP can be applied to integrate across different omics modalities, species, individuals,
batches, and normal/perturbed states
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(i.e., datasets can be of different dimensionalities), allows the user to specify the influ-

ence of each dataset on the embedding, and is effortlessly scalable to large datasets.

The ability of MultiMAP to integrate datasets of different dimensionalities allows lever-

aging information that is not considered by methods that operate in a shared feature

space. The power of MultiMAP’s consideration of all features in each modality can be

illustrated when integrating the 20,000-feature gene space of scRNAseq data with the

100,000-feature peak space of scATAC-seq data: by taking into account the full epigen-

etic landscape of cells, including distal enhancers, in addition to the transcriptome, cell

states such as, e.g., memory T cells versus naive T cells, where it is known that memory

is largely epigenetically encoded, can be more sharply defined in the manifold space.

We apply MultiMAP to challenging synthetic multimodal data, demonstrate its ability

to integrate a wide range of single-cell omics datasets, and benchmark it against popu-

lar integration algorithms using a variety of performance metrics. Finally, we apply

MultiMAP to the study of T cell development with new scATAC-seq data from fetal

thymi. We show that MultiMAP can co-embed datasets across different technologies

and modalities, while at the same time preserving the structure of the data, even with

extensive biological and technical differences. The resulting embedding and shared

neighborhood graph (MultiGraph) can be used for simultaneous visualization and inte-

grative analysis of multiple datasets. With respect to single-cell genomics data, this al-

lows for standard analysis on the integrated data, such as cluster label transfer, joint

clustering, and trajectory analysis.

Results
The MultiMAP framework

We introduce MultiMAP, an approach for integration and dimensionality reduction of

multimodal data. MultiMAP is based on a framework of Riemannian geometry and al-

gebraic topology and generalizes the UMAP framework to the setting of multiple data-

sets each with different dimensionality. MultiMAP takes as input any number of

datasets of potentially differing dimensions and recovers geodesic distances on a single

latent manifold on which all of the data is uniformly distributed. The distances are cal-

culated between data points of the same dataset by normalizing distances with respect

to a neighborhood distance specific to the dataset, and between data points of different

datasets by normalizing distances between the data in a shared feature space with re-

spect to a neighborhood parameter specific to the shared feature space. These distances

are then used to construct a neighborhood graph (MultiGraph) on the manifold. Fi-

nally, the data and manifold space are projected into a low-dimensional embedding

space by minimizing the cross entropy of the graph in the embedding space with re-

spect to the graph in the manifold space. MultiMAP allows the user to modify the

weight of each dataset in the cross entropy loss, and thus to modulate the contribution

of each dataset to the layout. Integrated analysis can be performed on the embedding

or the graph, and the embedding also provides an integrated visualization. The math-

ematical formulation of MultiMAP is elaborated in Additional file 2: Supplementary

Methods [15–20].

In order to study MultiMAP in a controlled setting, we first applied it to two syn-

thetic examples of multimodal data (“Methods”). The first synthetic data consists of
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points sampled randomly from the canonical 3D “Swiss Roll” surface and the 2D rect-

angle (Fig. 2a). The dataset is considered multimodal data, because samples are drawn

from different feature spaces but describe the same rectangular manifold. In addition,

we are given the position along the manifold of 1% of the data. This synthetic setting il-

lustrates that MultiMAP can integrate data in a nonlinear fashion and operate on data-

sets of different dimensionality, because data points along a similar position on the

manifold are near each other in the embedding (Fig. 2b). The MultiMAP embedding

properly unrolls the Swiss Roll dataset, indicating that the projection is nonlinear. The

embedding also appears to preserve aspects of both datasets; the data is curved and at

the same time unrolled.

To determine if MultiMAP can effectively leverage features unique to certain data-

sets, we used the MNIST database [21], where handwritten images were split horizon-

tally with thin overlap (Fig. 2c; see “Methods” for details). The two datasets can be

considered multimodal because they have different feature spaces but describe the same

set of digit images. The thin overlapping region of the two halves is not enough infor-

mation to create a good embedding of the data (Fig. 2c). Many distinct digits are simi-

lar in this thin central sliver, and hence they cluster together in the feature space of

this sliver. Indeed, in a UMAP projection of the data in the shared feature space of this

overlap, the clusters of different digits are not as well separated as in the UMAP projec-

tions of each half (Fig. 2c).

A multimodal integration strategy that effectively leverages all features would use the

features unique to each half to separate different digits, and the shared space to bring

Fig. 2 MultiMAP applied to synthetic data. a Data sampled from the 3D Swiss Roll (X1) and a 2D rectangle
(X2). b Shared embedding of both datasets produced by MultiMAP. Color indicates position along the
manifold (a,b). c Left (X1) and right (X2) halves of MNIST handwritten digit images with a 2 pixel wide
shared region. Gaussian noise is added to the left half. UMAP projections of each half and the shared
region. d Shared embedding of both MNIST halves (including Gaussian noise introduced for the left half)
produced by MultiMAP. Each color is a different handwritten digit (0–9 as shown in the key). This illustrates
that MultiMAP leverages both shared and unshared features to integrate multimodal datasets
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the same digits from each dataset close together (Fig. 2d). We show that with Multi-

MAP the different modalities are well mixed in the embedding space and the digits

cluster separately, despite mostly different feature spaces and noise being added to only

the second dataset. This indicates that MultiMAP is leveraging the features unique to

each dataset and is also robust to datasets with different levels of noise.

Moreover, MultiMAP has weight parameters ωv which control the contribution of

each dataset Xv to the final embedding, allowing the user to modulate which dataset

has a greater influence on the MultiMAP embedding. When a dataset’s weight is larger,

its structure has a larger contribution to the MultiMAP embedding. Our results show

that when integrating the MNIST data, for different choices of ωv, the datasets remain

well integrated in the embedding space (Additional file 1: Fig. S1a,b). For our real bio-

logical datasets, we use fixed default values of the weighting parameter (0.8 for scRNA-

seq and 0.2 for all other -omics), demonstrating that MultiMAP produces robust inte-

gration without the need to adjust the weighting.

Finally, to illustrate that our assumption of a shared manifold is robust to variable

levels of overlap across datasets, we used MultiMAP to integrate datasets with varying

numbers of shared clusters in the MNIST data (Additional file 1: Fig. S2). Our results

show that MultiMAP is able to effectively integrate datasets that have only 1 out of 10

clusters shared between them. The transfer accuracy, silhouette score, and structure

score of the MultiMAP integration remained largely constant as the number of overlap-

ping clusters varied, demonstrating that MultiMAP is highly robust to differences in

populations between datasets.

MultiMAP integration of single-cell transcriptomics and chromatin accessibility

Having shown that MultiMAP succeeds in integrating synthetic data, we applied the

technique to real biological data. Epigenomic regulation underlies gene expression and

cellular identity. Hence, integration of single-cell transcriptomics and epigenomics data

provides an opportunity to investigate how epigenomic alterations regulate gene ex-

pression to determine and maintain cell identity. In addition, effective integration with

transcriptomics data can improve the sensitivity and interpretability of the more sparse

scATAC-seq data.

To assess MultiMAP’s ability to integrate transcriptomic and epigenomic data, we ap-

plied it to integrate our previously generated high-coverage scATAC-seq data of mouse

splenocytes [22] and generated corresponding single-cell transcriptomic profiles of the

same tissue. The high coverage of the plate-based scATAC-seq data as well as the pub-

lished cluster annotations of the subpopulations served as a good ground truth example

to validate our method. Analysis of the transcriptomics data revealed similar subpopu-

lations to the published scATAC-seq dataset, in addition to two RNA-specific clusters:

a subpopulation of B cells with higher expression of Interferon-Induced (Ifit) genes and

a subpopulation of proliferating cells (Additional file 1: Fig. S3a,b).

MultiMAP effectively integrated the two datasets, using both gene activity scores and

the cell-type-specific epigenetic information outside of gene bodies. The different mo-

dalities are well mixed in the embedding space and cells annotated as the same type are

close together, regardless of the modality for different choices of ωv (Fig. 3a, Additional

file 1: Fig S1c,d). Next, we jointly clustered cells from both datasets using the
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MultiGraph. This produced clusters with markers corresponding to known cell types

[22] (Additional file 1: Fig S3c). The annotations produced by this joint clustering were

generally consistent with independent annotations of each dataset (Fig. 3c). Two of the

clusters determined to be proliferating cells and B cells with upregulated Ifit genes were

found only in the scRNA-seq data, as expected (Fig. 3a, Additional file 1: Fig. S3b). In

addition, the integration produced by MultiMAP is robust to different choices of the

weight parameters (Additional file 1: Fig. S1c).

Further, we used the MultiGraph to directly predict the cell types of the scATAC-seq

given the cell types of the scRNA-seq. Figure 3d shows the confusion matrix of the pre-

dictions, demonstrating that cells were generally annotated correctly. This illustrates

the ability of MultiMAP to leverage annotation efforts of one omic technology to in-

form those of another. Interestingly, a small subset of cells from scRNA-seq previously

annotated as T cells is now clearly separated on the MultiMAP plot, and clusters close

to the B cells (Fig. 3a, Additional file 1: Fig S3). Doublet detection confirmed that this

cluster is composed of doublet T/B cells. These doublets are spread throughout the

UMAP plot of the scRNA-seq data, but are clearly distinct on the MultiMAP plot

(Additional file 1: Fig. S3). This illustrates the power of MultiMAP both as a

visualization tool, and to reveal new populations of cells.

Next, we applied MultiMAP to integration of multiple batches from each data

modality, to assess the ability to account for batch effects. For this purpose, we

used recently published scRNA-seq and scATAC-seq data of human bone marrow

and peripheral blood mononuclear cells (PBMCs) [23]. This dataset consists of 16

experimental samples, representing different experimental batches. Another chal-

lenge is that cells are not in discrete clusters but rather on a continuum. Multi-

MAP is able to simultaneously correct batch effects and modality differences,

integrating all 16 datasets into a consistent embedding (Fig. 3e). The different mo-

dalities are well mixed in the embedding and cells of the same type are close to-

gether, regardless of modality or batch. The cell-type annotations of all of the data

were taken from the original publication [23], so they provide a good ground truth

and independent validation of MultiMAP. Additionally, MultiMAP is able to cor-

rect batch effects present in different omics technologies. Applying MultiMAP to

just the scRNA-seq data produces embedding that properly integrates cells of the

same type regardless of batch, and the same is true when MultiMAP is applied to

only the scATAC-seq data (Fig. 3f). It is also evident from this figure that clusters

with cell types unique to a batch remain unmixed in the embedding. This indicates

that MultiMAP is not forcing incompatible data to integrate and demonstrates that

MultiMAP can integrate datasets even if they have extensive technical differences.

MultiMAP integration of multiple modalities of mouse brain cells

Recent advances in spatial sequencing technology enable the simultaneous measure-

ment of gene expression and spatial locations of single cells, facilitating the study of tis-

sue structure [5]. While these technologies provide spatial information, they often

measure only a small fraction of the genes measured by scRNA-seq. Integration of

spatial measurements and scRNA-seq has the potential to provide spatial context to

Jain et al. Genome Biology          (2021) 22:346 Page 6 of 26



scRNA-seq data, as well as to reveal finer grained biological differences in the spatial

data by leveraging the greater number of cells and genes present in scRNA-seq data.

We applied MultiMAP to the integration of a Drop-seq scRNA-seq data of the mouse

frontal cortex [24] and STARmap in situ gene expression dataset [25]. Despite the

Fig. 3 MultiMAP integration of single-cell transcriptomics and chromatin accessibility. a MultiMAP
visualization of the integration of published scATAC-seq [22] and newly generated scRNA-seq data of the
mouse spleen (n = 1), colored by omic technology (left hand panel) and independent cell type annotations
of each omic technology (right hand panel). b Dot plot showing the z-score of the mean log-normalized
gene expression and gene activity scores of known markers of each identified joint cluster. The top dot of
each row shows the cells from the scRNA-seq data, and the bottom dot represents the cells from the
scATAC-seq data. c Riverplot showing correspondence between the joint clusters and the independent
annotations of the scATAC-seq and scRNAseq data. d Confusion matrix of label transfer from the scRNAseq
to the scATAC-seq. e MultiMAP visualization of the integration of single-cell transcriptomics and chromatin
accessibility of human bone marrow and peripheral blood mononuclear cells [23] colored by omic
technology (left hand panel) and by the published cell type annotation (right hand panel). f UMAP (panels
in top row) and MultiMAP (panels in bottom row) visualization of the scRNA-seq and scATAC-seq data
colored by cluster annotation and batch, showing the effective batch correction of both modalities
using MultiMAP
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differences between the two datasets in the number of measured genes (only 1020 in

STARmap) and the number of cells (71640 in Drop-seq versus 2137 in STARmap), our

integrated analysis shows that MultiMAP successfully integrated the datasets. Cluster-

ing the integrated data using the MultiGraph produced clusters with markers corre-

sponding to known cell types (Fig. 4a, b). One of the clusters, the claustrum, was found

only in the scRNA-seq data, consistent with previous studies [11]. Integration with

MultiMAP also resulted in improved cluster annotation for both datasets. The excita-

tory L4 neurons were previously only present in the STARmap data, as the motor cor-

tex and prefrontal cortex that are part of the frontal cortex are considered to lack a

layer 4 in mice [27]. However, after the integration, we also identified L4 cells in the

scRNA-seq data previously annotated as L5 neurons (Fig. 4a, c, Additional file 1: Fig.

S4). A similar population of pyramidal cells located between layers 3 and 5 were re-

cently identified both with anatomical and single-cell studies [26, 28]. This was con-

firmed by expression of marker genes associated with L4, including Cux2 and Rorb

(Additional file 1: Fig. S4). This illustrates the power of MultiMAP to reveal new cell

types.

MultiMAP also improves visualization of the STARmap data. Before integration with

MultiMAP, many of the cell types of the spatial data did not cluster separately and

were difficult to distinguish visually. In comparison, the MultiMAP embedding of the

STARmap data exhibits tighter cell-type clusters and increased separation between cell

types (Fig. 4e). This improvement was measured by the average Silhouette score in the

embedding space, which is significantly larger for MultiMAP (Fig. 4e). We attribute the

improved cluster separation seen in the MultiMAP plot to the fact that MultiMAP le-

verages all ~ 30 k genes, included genes that are present in only the scRNA-seq data,

rather than only the ~ 1 k genes shared between the STARmap and scRNA-seq.

Integration with MultiMAP also enabled us to spatially locate all the joint cell types

in the STARmap data, allowing study of the spatial structure of the tissue (Fig. 4d). The

pyramidal neurons localize to layers 2–6 and oligodendrocytes localize to the layer

below the cortex, whereas the interneurons do not appear to exhibit spatial

organization. These observations are all consistent with the known spatial architecture

of the mouse visual cortex [25].

To investigate the performance of MultiMAP on the integration of more than two

modalities, we applied the approach to integrate recently published multi-omics data-

sets of the mouse primary motor cortex [26] consisting of 9 separate datasets, including

7 single-cell or single-nucleus transcriptomics datasets, one single-nucleus chromatin

accessibility, and one single-nucleus DNA methylation (snmC-seq) dataset. MultiMAP

successfully co-embedded more than 600,000 single-cell or single-nucleus samples

assayed by six molecular modalities and identified the previously published cell subpop-

ulations. The MultiMAP embedding displays good mixing of clusters from different

modalities when the clusters correspond to the same cell type. Cell-type annotations

were taken from the original publication of the data, so they provide a good ground

truth and an independent validation of MultiMAP. We further see that cell types that

exist in one modality, but not in the others, are not falsely aligned in the embedding

space. This indicates that MultiMAP does not force incompatible data to integrate.

Finally, using the integration of scRNA-seq with the STARmap data, as well as the in-

tegration of the multi-omics spleen data, we assessed the impact of using only shared
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vs. all features. We find that using all features greatly improves the integration and re-

sults in embeddings that are visually and quantitatively superior, according to four per-

formance metrics (Additional file 1: Fig. S5). This illustrates that non-shared features

can be extremely helpful and demonstrates an advantage of MultiMAP over other

methods which do not consider non-shared features.

Fig. 4 MultiMAP integration of multiple modalities of mouse brain cell data. a MultiMAP visualization of
scRNA-seq [24] and spatial STARmap [25] (n = 2) data of the mouse brain, colored by omic technology, and
joint clusters identified with the MultiGraph. b Dot plot showing mean log-normalized gene expression of
known markers of each identified joint cluster. The top dot in each row represents cells from the scRNA-seq
data, and the bottom dot represents cells from the scATAC-seq data. c Riverplot showing correspondence
between the joint clusters, and the independent annotations of the scATAC-seq and scRNAseq data. d
Spatial locations of the STARmap cells, colored by the joint clusters. e UMAP and MultiMAP visualizations of
the STARmap dataset. The silhouette score as employed here quantifies the separation of clusters, and the
higher value for MultiMAP shows the better cluster separation as compared to UMAP. f MultiMAP
visualization of the integration of single-cell transcriptomics, chromatin accessibility, and DNA methylation
of the mouse primary cortex, colored by omic technology and the published cell type annotation [26]
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Benchmarking

We assessed and benchmarked the performance of MultiMAP against several popular

approaches for integrating single-cell multi-omics, including Seurat [10], LIGER [11],

iNMF [12], Conos [29], and GLUER [30].

These integration approaches differ in key regards, summarized in Fig. 5d. We used a

diversity of performance metrics to comprehensively compare MultiMAP with other ap-

proaches, including transfer accuracy, silhouette score, alignment, preservation of the

structure, and runtime. With these metrics, we quantified the separation of the joint clus-

ters, how well mixed the datasets were after integration and how well they preserved the

structure in the original datasets to investigate whether the methods integrate populations

across datasets without blending distinct populations together. To measure transfer accur-

acy and silhouette score, we use cell-type annotations generated by other publications or

different members of our lab group as ground truth, to ensure an independent validation.

Out alignment and structure preservation metrics are based on the structural qualities of

MultiMAP’s output and do not rely on ground truth labels. This provides an orthogonal

and complementary form of validation to using ground truth labels.

To this end, we generated single-nucleus data from human PBMCs using the Multi-

ome ATAC + RNA kit. We obtained a PBMC atlas of 6344 nuclei of high-quality

ATAC + RNA profiles. We analyzed and annotated the RNA and ATAC data separ-

ately, revealing all the known major PBMC types: CD14 and CD16 monocytes, cDCs

and pDCs, naive and effector CD4 and CD8 T cells, Tregs, MAIT and gamma-delta T

cells, NK and ILCs, naive and memory B cells, and plasmablasts (Additional file 1: Fig.

S6a). Most cell types were well separated in both modalities with the exception of the

NK and ILC clusters and the gamma-delta and the CD8 effector T cells that blended

together in the ATAC data.

We used the PBMCs as a gold standard dataset to benchmark MultiMAP against the

four other methods. As shown in the co-embedding and the metrics, MultiMAP suc-

cessfully integrated the cell types across modalities and outperformed other methods

(Additional file 1: Fig. S6b,c). The label transfer accuracy was particularly striking, with

MultiMAP achieving a much higher score compared to other methods.

Furthermore, we also benchmarked MultiMAP using a variety of multi-omics data

with published cell-type annotations, including the transcriptomics and chromatin ac-

cessibility spleen data, scRNA-seq and STARmap of the visual cortex, and the multi-

omics data of the primary cortex. For all datasets, MultiMAP achieves top or near top

performance on all metrics (Fig. 5). a, bThe embeddings produced by MultiMAP prove

superior for transferring cell-type annotations between datasets, separating clusters of

different cell populations, integrating datasets in a well-mixed manner, and capturing

the high-dimensional structure of each dataset.

Critically, MultiMAP is significantly faster and more scalable than all other bench-

marked methods, and significantly faster than LIGER and Seurat (Fig. 5c). Seurat,

LIGER and iNMF were not able to scale to the primary cortex data of 600 k, producing

out-of-memory errors despite access to 218 GB of RAM.

Finally, to assess the performance of MultiMAP for batch correction, we also applied

it to three scRNA-seq studies of the human pancreas [32–34] that were recently used

for comparison of eight batch correction methods [35]. Even though the main purpose

of MultiMAP is the integration of several different omic technologies, MultiMAP
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outperformed all other well-established batch correction methods in the field, demon-

strating that MultiMAP can correct batches and integrate multiple omics data simul-

taneously (Additional file 1: Fig. S7).

MultiMAP reveals patterns of T cell maturation along a multi-omic trajectory

Single-cell transcriptomics has enabled reconstruction of developmental trajectories

and the study of dynamic processes such as differentiation and reprogramming. Bulk

Fig. 5 Benchmarking MultiMAP against existing approaches. a Embeddings returned by multi-omic integration
methods on different datasets. “X” indicates that the method terminated due to an out-of-memory error (218
GB RAM). b Comparison of each method in terms of transfer learning accuracy (“Transfer”), separation of cell
type clusters as quantified by Silhouette coefficient (“Silhouette”), mixing of different datasets as measured by
fraction of nearest neighbors that belong to a different dataset (“Alignment”), preservation of high-dimensional
structure as measured by the Pearson correlation between distances in the high- and low-dimensional spaces
(“Structure”), and runtime. c Wall-clock time of multi-omic integration methods on different sized datasets.
Seurat, LIGER and iNMF produced out-of-memory errors when run on 500,000 data points (218 GB RAM). To
produce these datasets we subsampled the mouse primary cortex scRNA-seq and scATAC-seq data [26] using
geometric sketching [31]. The datasets were subsampled so that there are an equal number of cells in the
scRNA-seq and scATAC-seq data until 100,000 cells. Since the scATAC-seq data had 81,196 cells in total, for the
500,000-cell comparison, we used an scRNA-seq of 418,804 cells. d Comparison of capabilities and properties of
each method. “Mapping” refers to the nature of the mapping employed by the method; “Max no. datasets”
refers to the upper limit in terms of numbers of datasets accepted by the method; “Scalable to large data”
refers to allowing a total of over 500,000 cells; “Dataset-specific features” is whether the integration method
allows information that is not shared across datasets; and “Dataset influence on integration” is whether the user
can modulate the weighting of a given dataset relative to the others during the integration
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RNA-seq and ATAC-seq data have further revealed regulatory events driving these pro-

cesses [36]. However, joint analysis of single-cell expression and chromatin accessibility

profiles along a time course trajectory would allow the study of dynamic chromatin

regulation alongside gene expression, elucidating the epigenomic drivers of transcrip-

tional change [37, 38].

In order to investigate the potential of integrating multi-omic data along a common

differentiation trajectory, we focused on T cell development in the thymus. The thymus

is an organ essential for the maturation and selection of T cells. Precursor cells migrate

from the fetal liver and bone marrow to the thymus where they develop into different

types of mature T cells [39]. We recently provided a comprehensive single-cell tran-

scriptomics atlas of the human thymus during development, childhood, and adult life,

and computationally predicted the trajectory of T cell development from early progeni-

tors to mature T cells [39]. To expand on this and further investigate the gene regula-

tory mechanisms driving T cell development, we generated single-cell transcriptomics

and chromatin accessibility data from a human fetal thymus sample at 10 weeks of

gestation.

Clustering of the scRNA-seq data revealed cell types identified in our recently pub-

lished transcriptomic thymus cell atlas [39], including several subpopulations of T cells

across different stages of development, fibroblasts, endothelial cells, erythrocytes,

thymic epithelial cells (TECs), NK and ILC3 cells, and macrophages and dendritic cells

(Additional file 1: Fig. S8). The sparse scATAC-seq and the continuous nature of cell

types along the maturation trajectory made it difficult to cluster the ATAC cells into

different T cell subtypes (Additional file 1: Fig. S8). However, the integration with Mul-

tiMAP and the joint clusters obtained using the MultiGraph corresponded to the pub-

lished thymus cell types [39] (Fig. 6a, b), allowing us to correctly annotate the cell types

of the scATAC-seq data. Comparison with other integration methods shows that Mul-

tiMAP, by taking advantage of all features, outperforms other integration

methods (Additional file 1: Fig S8f).

We then selected the T cell populations identified from the joint clustering and per-

formed diffusion map pseudotime analysis using the alignment MultiMAP graph. The

reconstructed development trajectory showed a continuous differentiation with the

same trend as the published study, starting from early double negative (DN) CD4-CD8-

, gradually progressing to double positive (DP) CD4+ CD8+ T cells, and then differenti-

ating into single positive (SP) mature CD8+ or CD4+ T cells. Hallmark genes of T cell

differentiation varied along the inferred pseudotime in a manner consistent with [39]

(Fig. 6d), serving as validation of the trajectory inference and the integration produced

by MultiMAP.

To identify transcription factors (TFs) that potentially regulate T cell development,

we studied changes in TF expression and TF binding site accessibility along the differ-

entiation trajectory. The top variable TFs/TF binding sites along the trajectory included

many TFs that have been previously shown to be involved in T cell differentiation, in-

cluding GATA3, SPI1, MEF2C, ERG, TCF3, TCF4, TFAP4, MYBL2, STAT1, NR4A2,

and others [36, 39, 40] (Fig. 6e, Additional file 1: Fig. S9). The TFs that most varied

along the trajectory showed changes in motif accessibility at the transition between the

late DN and early DP stage of differentiation as shown before [40].
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Moreover, our integrated trajectory allowed us to identify TFs where changes in motif

accessibility and expression of the TF itself were closely coordinated, for example LEF1,

IRF1, REL, FOS, and others, suggesting that these TFs actively regulate their target

genes immediately and directly (Fig. 6e). In contrast, for TFs such as ETS1 and JUN,

gene expression of the TF significantly precedes the accessibility of the corresponding

TF binding sites, suggesting that additional regulatory mechanisms are potentially re-

quired for opening of the TF motifs.

Discussion
Here we present a novel approach for dimensionality reduction and integration of

multimodal data which considers full datasets, even when they have different feature

spaces. MultiMAP embeds all datasets into a shared space to preserve both the mani-

fold structure of each dataset independently, as well as in shared feature spaces. This

enables both visualization and streamlined downstream analyses.

Existing integration methods require correspondence between all features profiled

across omics technologies. In comparison, our method can incorporate different types

of features, such as gene expression and open chromatin peaks or intergenic methyla-

tion, and thus takes advantage of the full power of multi-omics data. Ignoring the fea-

tures unique to one dataset (as in most existing methods) may omit important

information such as distinguishing features of certain subpopulations of cells, and

thus yield an integrated embedding that does not distinctly cluster all subpopulations.

Dataset-specific features often capture cell type or state heterogeneity not present in

the shared features, for instance, cells may exhibit heterogeneity in chromatin structure

outside of genes, or heterogeneity in genes other than the very small number of ~ 1000

genes shared by different technologies, as in the case of integrating scRNA with spatial

data. Discarding this heterogeneity potentially stifles the discovery of new cell types or

states. In addition, our integrated MultiGraph enables inference of joint developmental

or differentiation trajectories that allow the study of dynamic chromatin regulation

alongside gene expression. Using non-shared features that account for the full epigen-

etic landscape of cells, including distal enhancers, could help identify novel regulatory

elements.

Another limitation is that linear integration approaches such as CCA and NMF are

not able to correct for nonlinear distortions between datasets. In contrast, MultiMAP

uses a nonlinear manifold learning approach and we demonstrate that it can effectively

integrate in the presence of nonlinear differences between datasets. We find this to be

a significant advantage of MultiMAP both for multi-omic integration and batch correc-

tion. Crucially, some methods such as LIGER, Seurat, and other CCA or NMF ap-

proaches are challenged by scaling to large datasets because they require matrix

factorization. In contrast, MultiMAP readily scales to hundreds of thousands of cells

due to its graph-based algorithm.

An additional feature of MultiMAP, not present in other existing strategies, is that

the influence of each dataset on the shared embedding can be modulated. This is useful

when integrating datasets of different qualities, or when aligning a query dataset to a

reference dataset. Comparison with existing methods for integration shows that Multi-

MAP outperforms or has close to best performance in every aspect investigated.
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Fig. 6 Integration of scRNAseq and scATAC-seq data of human fetal thymus reveals transcriptional
regulatory principles of T cell development. a MultiMAP visualization of scRNA-seq and scATAC-seq datasets
of the human fetal thymus (n = 1), colored by modality and joint clusters identified using the MultiGraph. b
Heatmap of gene expression and gene activity scores of key markers of the joint clusters identified using
the MultiGraph. c Inferred pseudotime using the MultiGraph recovers the T cell differentiation trajectory.
Color indicates pseudotime from red (early, beginning) to blue (late, end). d Heatmap of the gene
expression and gene activity scores over pseudotime of genes known to be involved in T cell development.
e Smoothed heatmaps of the z-score of the gene expression and motif accessibility of the most variable
transcription factors over pseudotime. The motif accessibilities of TFs that varied most in time show
changes in accessibility at the transition between the late DN and early DP stage of differentiation. This
includes TFs such as GATA3 and LEF1 for which the chromatin at the binding sites closes at that transition,
and TFs for which the chromatin at the binding sites opens, such as E2F4, ETS1, and others
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MultiMAP is a robust and effective method for dimensionality reduction and integra-

tion of multimodal data and is extremely fast and scalable to massive datasets.

Using synthetic examples to illustrate the power of the method, we show that Multi-

MAP leverages the features unique to each dataset to effectively integrate and reduce

the dimensionality of the data and is also robust to data with noise. Throughout our

applications of MultiMAP to diverse single-cell multi-omic data, we demonstrate that

our method can facilitate integration across transcriptomic, epigenomic, and spatially

resolved datasets and derive biological insights jointly from multi-omic single-cell data.

In addition, our method can align datasets across different technologies and modalities

even with extensive biological and technical differences. Crucially, we show that Multi-

MAP is flexible enough to integrate datasets with different clusters and cell popula-

tions, illustrating that MultiMAP is applicable even when its central hypothesis is not

strictly reflected by the data. The multimodal integration of three or more omics tech-

nologies opens many opportunities for the comprehensive study of tissues.

We note that our method is based on the hypothesis that multi-omics data are uni-

formly distributed on a latent manifold. A hypothesis of this sort, about the distribution

of data in a latent space, is a central feature of many existing integration strategies. For

example, CCA-based strategies (including Seurat and Conos) assume that the data res-

ide in a maximally correlated manner in a latent space which is a linear projection of

the original data. MultiMAP, in contrast, does not make as strong an assumption be-

cause we do not restrict the latent manifold to a linear projection of the data. While

this kind of hypothesis is often realistic for data generated from the same tissue, there

may be cases where this is not strictly the case. In practice, we find that MultiMAP can

successfully accommodate datasets that depart from this central hypothesis, i.e., when

clusters and cell populations are not shared across all datasets that are being

integrated.

Perhaps the greatest potential lies in applying MultiMAP to datasets beyond those

considered here. Integrative analysis with MultiMAP can be used to compare healthy

and diseased states and identify pathologic features, or to uncover cell-type-specific re-

sponses to perturbations. Other examples include the integration of data across species

to study the evolution of cell states and identify conserved cell types and regulatory

programs. Along similar lines, the integration of in vivo with in vitro models such as

organoids will reveal the quality or faithfulness of cells in a dish relative to their native

counterparts. Finally, given the rapid development of joint multimodal single-cell gen-

omics methods (e.g., CITEseq for protein and RNA, joint snRNA-, and ATACseq), it is

relevant to point out that MultiMAP can be applied to multi-omic data acquired both

from different cells and from the same cells.

Conclusions
In this study, we introduce a novel algorithm for dimensionality reduction and integra-

tion of multiple datasets, which generalizes the UMAP algorithm to the setting of mul-

tiple datasets with different dimensions. MultiMAP is a nonlinear manifold learning

algorithm that recovers a single manifold on which several datasets reside and then

projects the data into a single low-dimensional space so as to preserve the manifold

structure. It can be used for visualization of multimodal data, and as an integration ap-

proach that enables joint analyses.
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We apply MultiMAP to the integration of a variety of single-cell transcriptomics,

chromatin accessibility, methylation, and spatial data and show that it outperforms

current approaches in preservation of high-dimensional structure, alignment of data-

sets, visual separation of clusters, transfer learning, and runtime. Furthermore, Multi-

MAP enables joint analysis of single-cell expression and chromatin accessibility profiles

along a time course trajectory, allowing the study of dynamic chromatin regulation

alongside gene expression.

In summary, given the broad appeal of dimensionality reduction methods (e.g., PCA,

tSNE, UMAP), and the growth of multimodal data in many areas of science and engin-

eering, we anticipate that MultiMAP will find wide and diverse use.

Methods
MultiMAP

MultiMAP (Fig. 1) is a new approach for the integration and dimensionality reduction

of multimodal data based on a framework of Riemannian geometry and algebraic top-

ology. MultiMAP takes as input any number of datasets of potentially differing dimen-

sions. The datasets take the form Xi, i = 1,2,…, with xj
i ∈ RDi being the jth point in

dataset Xi. MultiMAP recovers geodesic distances on a single latent manifold M on

which all of the data is uniformly distributed. The geodesic distances are calculated be-

tween data points of the same dataset by normalizing distances in each dataset’s ambi-

ent space Xii with respect to a neighborhood distance specific to the dataset, and

between data points of different datasets by normalizing distances between the data in

a shared ambient space Xij with respect to a neighborhood distance specific to the

shared feature space. We note that MultiMAP leverages both shared and unshared fea-

tures. We do not wish for our approach to rely only on unmatched features because

correspondence between shared features provides valuable information across omics.

When integrating multi-omics data with MultiMAP, the ambient spaces are the PC

components of each dataset’s full feature space and of the shared feature space(s).

These neighborhood distances are the radius of a constant-radius ball B on M. These

distances are then used to construct a neighborhood graph (MultiGraph) on the mani-

fold. Finally, the data and manifold space are projected into a low-dimensional embed-

ding space by minimizing the cross entropy of the graph in the embedding space with

respect to the graph in the manifold space. Specifically, this optimization minimizes

cross entropy of a fuzzy set–representation (ν, {xj
i}) of the graph in the embedding

space with respect to a fuzzy set–representation (μ, {xj
i}) of the graph in the manifold

space. MultiMAP allows the user to modify the weight ωi of each dataset in the cross

entropy loss, allowing the user to modulate the contribution of each dataset to the lay-

out. Integrated analysis can be performed on the embedding or the graph, and the em-

bedding also provides an integrated visualization. MultiMAP is novel in its graph

construction on the shared manifold, the weights of the graph’s edges, and the

optimization of the low-dimensional embedding, each of which is motivated by mani-

fold geometry. An extended description of MultiMAP, including mathematical back-

ground and motivation, is in the Supplementary information.
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Synthetic data

MultiMAP was applied to two synthetic examples of multimodal data, in order to study

the technique in a controlled setting.

The first synthetic setting is schematized in Fig. 2a. This setting consists of one data-

set (X1) of 10,000 points sampled randomly from the canonical 3D “Swiss roll” surface

(generated with sklearn in Python), and a second dataset (X2) of 10,000 points sampled

randomly from a 2D rectangle. The two datasets can be considered multimodal data

because they have different feature spaces but describe a similar rectangular manifold.

In addition, we are given the position along the manifold of 1% of the data. Distances

between data in the different datasets are calculated for 1% of the data as the absolute

differences between these positions. These distances are supplied to MultiMAP. The

purpose of this setting is to determine if MultiMAP can integrate data in a nonlinear

fashion and operate on datasets of different dimensionality.

The second synthetic setting is schematized in Fig. 2c. This setting consists of two

datasets based on the MNIST database [41] which comprises 70,000 28 × 28 pixel gray-

scale images of handwritten digits 0–9. The first dataset (X1) consists of the 28 × 15

pixel left half of each of images flattened into a 420 dimensional vector. The second

dataset (X2) consists of the 28 × 15 pixel right half of each of 70,000 digit images, also

flattened into a 420 dimensional vector. Added to the first dataset is Gaussian noise

with a mean of zero and a standard deviation equal to the maximum pixel value. The

two halves overlap by a 28 × 2 pixel region. Distances between data in the different

datasets are calculated in this shared space and supplied to MultiMAP. The two data-

sets can be considered multimodal because they have different feature spaces but de-

scribe a similar population of digit images. The purpose of this setting is to determine

if MultiMAP can effectively leverage features unique to certain datasets. The thin over-

lapping region of the two halves is not enough information to create a good embedding

of the data. Many distinct digits are similar in this thin central sliver, and hence they

should cluster together in the feature space of the two pixel overlap. Indeed, in a

UMAP projection of the data in the shared feature space of this overlap, the clusters of

different digits are not as well separated as in the UMAP projections of each half (Fig.

2c). A multimodal integration strategy that effectively leverages all features would use

the features unique to each half to separate different digits, and the shared space to

bring the same digits from each dataset close together.

Acquisition and processing of human fetal thymic tissue

The developmental age was estimated from measurements of foot length and heel-to-

knee length, and compared against a standard growth chart [42]. A piece of skin was

collected from every sample for Quantitative Fluorescence-Polymerase Chain Reaction

analysis using markers for the sex chromosomes and the following autosomes: 13, 15,

16, 18, 21, 22. The sample was of normal karyotype.

The tissue was processed immediately after isolation using enzymatic digestion. Tis-

sue was transferred to a sterile 10 mm2 tissue culture dish and cut into < 1 mm3 seg-

ments before being transferred to a 50-mL conical tube. Tissues were digested with 1.6

mg/mL collagenase type IV (Worthington) in RPMI (Sigma-Aldrich) supplemented

with 10% (v/v) heat-inactivated fetal bovine serum (FBS; Gibco), 100 U/mL penicillin
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(Sigma-Aldrich), 0.1 mg/mL streptomycin (Sigma-Aldrich), and 2 mML-glutamine

(Sigma-Aldrich) for 30 min at 37 °C with intermittent shaking. Digested tissue was

passed through a 100-μm filter, and cells collected by centrifugation (500g for 5 min at

4 °C). Cells were treated with 1× red blood cells (RBC lysis buffer (eBioscience) for 5

min at room temperature and washed once with a flow buffer (PBS containing 5% (v/v)

FBS and 2mM EDTA) prior to cell counting. For scATAC-seq, cells were taken for-

ward for nuclei isolation following 10X Genomics guidelines. Briefly, cells were centri-

fuged (300g for 5 min), added the lysis buffer (Tris-HCl (pH 7.4) 10 mM; NaCl 10Mm;

MgCl2 3 mM; Tween-20 0.1%; NP-40 0.1%; Digitonin 0.01%; BSA 1%) and incubated

on ice for 3 min (time optimized for thymus). Following the incubation, cells were

washed (Tris-HCl (pH 7.4) 10 mM; NaCl 10Mm; MgCl2 3mM; BSA 1%; Tween-20

0.1%) and centrifuged (300g for 5 min) and nuclei were resuspended in Diluted Nuclei

Buffer (10X Genomics). Isolated nuclei were high-quality with well-resolved edges and

no evidence of blebbing. The final nuclei concentration was determined prior to load-

ing using a hemocytometer.

Single-cell RNA and ATAC sequencing of human thymus

scRNA-seq targeting 5000 cells per sample was performed using the Chromium Con-

troller (10X Genomics). Single-cell cDNA synthesis, amplification, and sequencing li-

braries were generated using the Single Cell 5’ Reagent Kit following the

manufacturer’s instructions. The libraries from up to eight loaded channels were multi-

plexed together and sequenced on an Illumina HiSeq 4000.

scATAC-seq targeting 5000 cells was performed using Chromium Single Cell ATAC

Library and Gel Bead kit (10X Genomics). The libraries from up to eight loaded chan-

nels were multiplexed together and sequenced on an Illumina HiSeq 4000.

Computational processing and analysis of the human fetal thymus single-cell genomics

data

scRNA-seq data were aligned and quantified using the Cell Ranger Single-Cell Software

Suite (version 2.0, 10X Genomics) against the GRCh38 human reference genome pro-

vided by Cell Ranger. The scRNA-seq data was preprocessed using Seurat. Cells with

fewer than 500 detected genes and more than 10% mitochondrial gene expression con-

tent were removed. Ribosomal genes, cell cycle genes [39], and genes associated with

dissociation-induced effects [43] were removed. Clusters were identified using a com-

munity identification algorithm as implemented in the Seurat “FindClusters” function

and annotated using canonical cell-type markers from [39].

The scATAC-seq data was aligned and preprocessed using CellRanger (10X Genom-

ics). SnapATAC [44] was used for quality control, preprocessing, and generating cell-

by-bin and log-normalized gene activity matrices. The binarized cell-by-bin matrix was

used as input for term frequency-inverse document frequency (TF-IDF) weighting,

using term frequency and smoothed inverse document frequency as the weighting

scheme. Singular-value decomposition (SVD) was used for dimensionality reduction.

Clustering and UMAP visualization were performed using Seurat. chromVar [45] was

used to discover transcription factor dynamics and variation in their motif accessibility.
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The 50 dimension reduced scATAC-seq and the 50 dimension reduced scRNA-seq

data were supplied as input to MultiMAP. A shared feature space with both the

scATAC-seq and scRNA-seq was constructed by removing genes from each dataset

that were not present in the other, and then reducing the space to 50 dimensions using

PCA. This shared space was supplied as input to MultiMAP, allowing the calculation of

distances between cells from different datasets. The parameters of MultiMAP were all

set to their default values, including the weight parameter for the scRNA-seq set to 0.8

and for ATAC-seq set to 0.2, on account of the higher-quality scRNA-seq.

The Leiden algorithm [46] was applied directly to the MultiGraph to jointly cluster

all cells. The clusters were then annotated using canonical cell-type markers from [39].

Diffusion pseudotime (DPT) [47] was used for trajectory inference. The MultiGraph

was supplied as input to the DPT function in SCANPY [48]. DPT was performed only

on cells annotated as T cells. Cells were removed if they were positioned away from T

cell clusters and close to fibroblasts and erythrocytes on the MultiMAP plot, as this

likely indicated that they were incorrectly annotated. tradeSeq [49] was used to identify

genes whose expression changes significantly along the trajectory.

Acquisition and processing of human PBMCs

PBMCs from two donors were acquired from a LeukoLab (Clinical division of AllCells).

Frozen PBMC samples were thawed quickly at 37 °C in a water bath. Two pools made

for technical duplicates with ~ 500,000 cells for each donor per pool (50/50). Nuclei

isolation, transposition, ATAC-seq, and Gene Expression (GEX) sequencing libraries

construction performed according to the manufacturer’s demonstrated protocol

(CG000365 Rev A; 10X Genomics) and Next GEM Single Cell Multiome ATAC and

Gene Expression user guide (CG000338 Rev A; 10X Genomics). One lane per pool with

a 3000 targeted nuclei recovery was loaded on a Chromium Next GEM Chip J. ATAC-

seq and GEX indexed libraries were sequenced on a NovaSeq 6000 SP Flowcell accord-

ing to the 10X Genomics recommendations, aiming for a minimum of 50,000 PE reads

per cell for both types (ATAC-Seq and GEX) libraries.

Computational processing and analysis of the human PBMCs Multiome ATAC+RNA data

snRNA-seq and snATAC-seq data were aligned and quantified using the Cell Ranger

ARC suite (10X Genomics) against the GRCh38 human reference genome provided by

Cell Ranger. The snRNA-seq data was preprocessed using Seurat. Cells with fewer than

500 detected genes and more than 20% mitochondrial gene expression content were re-

moved. Clusters were identified using a community identification algorithm as imple-

mented in the Seurat “FindClusters” function and annotated using canonical cell-type

markers.

SnapATAC [44] was used for quality control, preprocessing, and generating cell-by-

bin and log-normalized gene activity matrices for the snATAC-seq data. The binarized

cell-by-bin matrix was used as input for term frequency-inverse document frequency

(TF-IDF) weighting, using term frequency and smoothed inverse document frequency

as the weighting scheme. SVD was used for dimensionality reduction. Clustering and

UMAP visualization were performed using Seurat.
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The 50 dimension reduced snATAC-seq and the 50 dimension reduced snRNA-seq

data were supplied as input to MultiMAP. A shared feature space with both the

snATAC-seq and snRNA-seq was constructed by removing genes from each dataset

that were not present in the other, and then reducing the space to 50 dimensions using

PCA. This shared space was supplied as input to MultiMAP, allowing the calculation of

distances between cells from different datasets. The parameters of MultiMAP were all

set to their default values, including the weight parameter for the snRNA-seq set to 0.8

and for snATAC-seq set to 0.2, on account of the higher-quality snRNA-seq.

Single-cell RNA sequencing of mouse spleen and data processing

The spleen from a 6-month-old C57BL/6Jax mouse was removed. The splenocytes were

isolated by passing the spleen through a 70-μm cell strainer (Fisher Scientific

10788201) into 30-m ice-cold 1× DPBS (Thermo Fisher 14190169) with 2 mM EDTA

and 0.5% (w/v) BSA (Sigma A9418) using the plunger of a 2-ml syringe. Cells were

spun down at 500g for 7 min at 4°. Then the supernatant was removed, and the cell pel-

let resuspended in 5 ml 1× RBC lysis buffer (Thermo Fisher 00-4300-54). The cell sus-

pension was vigorously vortexed for 5 s and left on the bench for 5 min to lyse the red

blood cells. Then, 45 ml ice-cold 1× DPBS was added, and cells were spun down at

500g for 7 min at 4°. The supernatant was removed, and 30ml ice-cold 1× DPBS with

0.1% BSA was used to resuspend the cell pellet. The cell suspension was passed

through a Miltenyi 30 μm Pre-Separation Filter (Miltenyi 130-041-407), and the cell

number was determined using the C-chip counting chamber (VWR DHC-N01). The

cells were spun down again, and the cell pellet resuspended in ice-cold 1× DPBS with

0.1% BSA to reach a concentration of 1,000,000 cells per ml. The splenocytes were then

loaded on the 10x Chromium Controller, aiming to recover ~ 5000 cells (Targeted Cell

Recovery 5000 cells). cDNA and a sequencing library were made according to 10x Sin-

gle Cell 3’ Reagent Kits v2 manual. The library was sequenced on an Illumina HiSeq

4000 machine.

The resulting scRNA-seq data were preprocessed using CellRanger (10X Genomics)

and downstream analysis were performed using the Seurat workflow. Cells with fewer

than 200 detected genes and more than 10% mitochondrial gene expression content

were filtered out. Downstream analyses such as normalization, clustering, and

visualization were performed using Seurat. Clusters were identified using the commu-

nity identification algorithm as implemented in the Seurat “FindClusters” function.

Clusters were annotated using canonical cell-type markers from the original study [22].

Scrublet [50] was used for doublet detection.

Acquisition and processing of previously published datasets

The mouse spleen scATAC-seq data was obtained from ArrayExpress (E-MTAB-6714)

and preprocessed using the code provided by Chen et al. [22] (https://github.com/

dbrg77/plate_scATAC-seq). Briefly, reads from all cells were merged, and open chro-

matin regions were identified by peak calling with MACS2 [51]. Latent semantic index-

ing analysis was used for dimensionality reduction of the resulting cell-by-bin matrix.

The binary cell-by-bin accessibility was used as input for TF-IDF weighting, using term

frequency and smoothed inverse document frequency as the weighting scheme. SVD
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was used for dimensionality reduction. SnapATAC [44] was used to generate gene ac-

tivity count matrices, which were then log-normalized. The 50 dimension reduced ac-

cessibility of the scATAC-seq and the 50 dimension reduced gene expression of the

scRNA-seq data were supplied as input to MultiMAP. A shared feature space with both

the scATAC-seq and scRNA-seq was constructed by removing genes from each dataset

that were not present in the other, and then reducing the space to 50 dimensions using

PCA. This shared space was supplied as input to MultiMAP, allowing the calculation of

distances between cells from different datasets. The parameters of MultiMAP were all

set to their default values, including the weight parameter for the scRNA-seq set to 0.8

and for ATAC-seq set to 0.2 due to the higher-quality scRNA-seq. The Leiden algo-

rithm was applied directly to the MultiGraph to jointly cluster all cells. Harmonic

function-based node classification was performed directly on the MultiGraph to predict

cell types of the scATAC-seq cells given the cell types of the scRNA-seq cells [52].

Human hematopoiesis scRNA-seq and scATAC-seq data were downloaded from

https://github.com/GreenleafLab/MPAL-Single-Cell-2019. The scRNA-seq consists of 6

experimental batches, and the scATAC-seq consists of 10 experimental batches. Severe

batch effects were observed, so this data was considered to consist of 16 separate data-

sets for the integration with MultiMAP. The scRNA-seq data was preprocessed using

Seurat, and each batch was log-normalized and reduced to 50 dimensions with PCA.

The cell-by-bin peak accessibility was used as provided by the authors. The binary cell-

by-bin accessibility was used as input for TF-IDF weighting, using term frequency and

smoothed inverse document frequency as the weighting scheme. Separately for each

batch, the weighted data were reduced to 50 dimensions using SVD. Gene activities of

the ATAC data were calculated using Cicero [53] and log-normalized. To integrate all

of the data at once, all 16 datasets were provided as input to MultiMAP in the form of

the 50 dimension reduced accessibility data of the scATAC-seq and the 50 dimension

reduced gene expression of the scRNA-seq. Shared feature spaces containing two data-

sets were constructed by removing genes from each of the datasets that were not

present in the other, and then reducing the space to 50 dimensions using PCA. These

shared spaces were supplied as input to MultiMAP to calculate distances between cells

from different datasets. The parameters of MultiMAP were all set to their default

values, including the weight parameter for the scRNA-seq set to 0.8 and for ATAC-seq

set to 0.2 due to the higher-quality scRNA-seq data.

scRNA-seq data of the mouse frontal cortex acquired with Drop-seq was obtained

from dropviz.org. STARmap data of the mouse visual cortex was downloaded from

https://www.starmapresources.com/data/. Each dataset was separately preprocessed

with Seurat [10], log-normalized, and reduced to 50 dimensions with PCA. Both 50 di-

mensional reduced datasets were supplied as input to MultiMAP. A shared feature

space with both the STARmap and scRNA-seq data was constructed by removing genes

from each dataset that were not present in the other, and then reducing the space to 50

dimensions using PCA. This shared space was supplied as input to MultiMAP to calcu-

late distances between cells from different datasets. The parameters of MultiMAP were

all set to their default values, including the weight parameter for the scRNA-seq set to

0.8 and for Drop-seq set to 0.2, on account of higher-quality, tighter clusters generally

observed in the scRNA-seq.
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scRNA-seq, scATAC-seq, and snmC-seq data from the mouse primary cortex [26]

was downloaded from the Neuroscience Multi-omics Archive (NeMO). The scRNA-

seq was preprocessed using Seurat, log-normalized, and reduced to 50 dimensions with

PCA. The binary cell-by-bin accessibility and gene activity count matrix of the

scATAC-seq were obtained with SnapATAC [44]. The gene activity count data was

log-normalized. Latent semantic indexing analysis was used for dimensionality reduc-

tion of the scATAC-seq accessibility. The binary cell-by-bin accessibility was used as

input for TF-IDF weighting, using term frequency and smoothed inverse document fre-

quency as weighting scheme. Weighted data were reduced to 50 dimensions using

SVD. The DNA methylation data was preprocessed as described in [54], using the pro-

vided scripts. Briefly, after mapping, the methyl-cytosine counts and total cytosine

counts were calculated in two sets of genome regions for each cell: the non-

overlapping 100-kb bins tiling the mm10 genome, which was used for dimensionality

reduction, and gene body regions ± 2 kb, which is used for the joint alignment. Poster-

ior mCH and mCG rates were calculated based on beta-binomial distribution for the

non-overlapping 100-kb bins matrix. The top 3000 highly variable features were taken

and the data was reduced to 50 dimensions with PCA. Because gene body mCH pro-

portions are negatively correlated with gene expression level, the direction of the

methylation data was reversed by subtracting all values from the maximum methylation

value [11]. The 50 dimensional reduced scRNA-seq, scATAC-seq, and snmC-seq were

supplied as input to MultiMAP. Shared feature spaces containing each pair of two data-

sets and all three datasets together were constructed by removing genes from each of

the datasets that were not present in the other, and then reducing the space to 50 di-

mensions using PCA. These shared spaces were supplied as input to MultiMAP, allow-

ing the calculation of distances between cells from different datasets. The parameters

of MultiMAP were all set to their default values. The weight parameter for the scRNA-

seq set to 0.8 and for the other omics set to 0.2, on account of the higher-quality

scRNA-seq data.

Benchmarking

Benchmarking of MultiMAP, Seurat v3, LIGER, iNMF, Conos, and GLUER was per-

formed using a variety of multi-omic data including the scRNA-seq and scATAC-seq

data of the spleen, scRNA-seq, and STARmap of the visual cortex, and the scRNA-seq,

scATAC-seq, and snmC-seq of the primary cortex. These datasets were chosen because

they all have cell type annotations supplied in their original publications, which was

used to independently validate the integration.

The scRNA-seq and STARmap data was log-normalized using Seurat and then used

as an input for all integration methods, except GLUER where the raw data was used as

an input and preprocessed using the SCANPY workflow. The scATAC-seq data was

preprocessed as described above and the log-normalized gene activity matrix was used

as an input for all integration methods. Seurat, LIGER, iNMF, Conos, and GLUER were

executed as detailed in their tutorials, with all parameters set to their default values. La-

tent Semantic Indexing was used as the dimensionality reduction technique for the

scATAC-seq data for weighting anchors in Seurat 3. CCA was used as the
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dimensionality reduction technique for the scRNA-seq and STARmap data for weight-

ing anchors in Seurat.

A diversity of performance metrics was used. After integration, label transfer of the

cell type annotations from the scRNA-seq to each other omic was performed by setting

the cell type of a query cell to the most frequent type among its 5 nearest labeled

neighbors. The balanced accuracy of the label transfer (“Transfer”) was calculated using

the annotations from the original publications as the ground truth. A high accuracy in-

dicates that the same cell types from different modalities are near each other in the in-

tegrated embedding. After integration, the average Silhouette score [55] (“Silhouette”)

across all cells was calculated using the cell type annotations from the original publica-

tions as the cluster labels. We note that the Silhouette score is not affected by the num-

ber of clusters as we use the same cell type labels, and hence number of clusters, for

each integration method. A higher Silhouette score indicates the embedding is better

separating distinct cell types. The degree of alignment (“Alignment”) of the different

datasets in the integrated embedding was calculated as the proportion of each cell’s 5

nearest neighbors that originated in a different dataset, averaged over all cells. This

metric was also used in [11]. A higher value of the alignment score indicates that the

different datasets are more evenly mixed in the integrated embedding. The degree to

which the embedding preserves the high-dimensional structure (“Structure”) of each

dataset was calculated as the Pearson correlation between all pairwise distances in the

high-dimensional spaces and the corresponding distances in the embedding. A higher

correlation indicates that the embedding is more faithful to the high-dimensional struc-

ture. All of these performance metrics were also calculated in the shared feature space

of the datasets to be integrated, to get baseline values of the metrics prior to the appli-

cation of any integration strategy.

The wall-clock runtime of each method on each dataset was recorded. Additionally,

to characterize the runtimes of the methods on a wide range of dataset sizes, the inte-

gration methods were run on datasets ranging from 1000 to 500,000 cells. To produce

these datasets, we subsampled the mouse primary cortex scRNA-seq and scATAC-seq

data [26] using geometric sketching [31]. The datasets were subsampled so that there

were an equal number of cells in each of the scRNA-seq and scATAC-seq datasets, up

to 100,000 cells. Since the scATAC-seq data had 81,196 cells in total, for the 500,000-

cell comparison, we used an scRNA-seq of 418,804 cells. All methods were run with

3.1 GHz Intel i7 cores and 218 GB RAM.
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