226 research outputs found

    Cortical ubiquitin-positive inclusions in frontotemporal dementia without motor neuron disease: a quantitative immunocytochemical study

    Get PDF
    Ubiquitin-positive tau-negative inclusions were initially described in the rare form of frontotemporal dementia (FTD) associated with motor neuron disease. However, recent studies have indicated that these inclusions are also present in typical FTD, which is usually characterized by nonspecific histological changes. To examine the contribution of these inclusions to neuronal loss and to explore their relationship with disease duration, we performed a quantitative immunocytochemical analysis of 38 typical FTD cases. Relationships between neuron and ubiquitin inclusion densities as well as between duration of illness and neuropathological parameters was studied using linear regression in both univariate and multivariate models. Ubiquitin-positive tau-negative intracytoplasmic inclusions were present in 65.8% of cases in the dentate gyrus, 57.9% in temporal cortex and 31.6% in frontal cortex. The highest densities of ubiquitin-positive inclusions were consistently observed in the dentate gyrus, followed by the temporal and frontal cortex. There was no statistically significant relationship between neuron and ubiquitin-positive inclusion densities in any of the areas studied. In contrast, ubiquitin-positive inclusion densities in the dentate gyrus were negatively related to the duration of illness. Our data suggest that the development of ubiquitin-related pathology is the rule and not the exception in typical FTD, yet is not causally related to neuronal loss. They also reveal that the development of ubiquitin-positive inclusion densities in the dentate gyrus may be associated with a more aggressive form of the diseas

    Konzeption und Realisierung eines neuen Systems zur produktbegleitenden virtuellen Inbetriebnahme komplexer Förderanlagen

    Get PDF
    Die virtuelle Inbetriebnahme ermöglicht die Vorwegnahme der steuerungstechnischen Inbetriebnahme von komplexen Förderanlagen an einem virtuellen Modell. In dieser Arbeit wird die Konzeption eines neuen Systems zur produktbegleitenden virtuellen Inbetriebnahme geschildert und dessen Umsetzung in Form eines neuen prototypischen Simulationssystems beschrieben. Durch die Umsetzung des entwickelten Konzeptes wurde eine durchgängige virtuelle Inbetriebnahme der betrachteten Förderanlagen erreicht

    Lagrange interpolation at real projections of Leja sequences for the unit disk

    Get PDF
    We show that the Lebesgue constant of the real projection of Leja sequences for the unit disk grows like a polynomial. The main application is the first construction of explicit multivariate interpolation points in [1,1]N[-1,1]^N whose Lebesgue constant also grows like a polynomial.Comment: 12 pages, 2 figure

    Lewy body dysphagia

    Get PDF
    The presence of Lewy bodies (LB) in autonomic structures of the central and peripheral nervous system in Parkinson's disease (PD) is well known and could explain clinical signs of pure autonomic failure (PAF) or dysphagia, frequently associated with the disorder. There are many neuropathological reports in the literature with detailed descriptions of PAF, however, LB dysphagia has thus far only been reported once. In the present study, we describe two cases of isolated dysphagia without extrapyramidal syndrome, diagnosed clinically as progressive supranuclear palsy and amyotrophic lateral sclerosis, where detailed neuropathological examination identified LBs in the dorsal vagal motor nuclei in the medulla. These findings confirm the existence of isolated LB dysphagia and emphasize the importance of detailed neuropathological and immunohistochemical examination in cases of dysphagi

    Identification of Alzheimer and vascular lesion thresholds for mixed dementia

    Get PDF
    To explore the pathological substrates of mixed dementia, we performed a detailed analysis of lacunar and microvascular pathology in 156 autopsied, elderly individuals with various degrees of Alzheimer's disease (AD) pathology. Cognitive status was assessed prospectively using the Clinical Dementia Rating (CDR) scale; neuropathological evaluation included Braak neurofibrillary tangle (NFT) and Aß-protein deposition staging and bilateral semi-quantitative assessment of microvascular ischaemic pathology and lacunes; statistics included univariate and multiple regression models controlling for age, and receiver-operating characteristic analysis. Sensitivity analysis was performed in a randomized derivation sub-sample and tested in a validation sub-sample. White matter lacunes, periventricular and diffuse white matter demyelination and focal and diffuse cortical gliosis were not associated with cognition. Braak NFT, Aß deposition, cortical microinfarcts (CMI) and thalamic and basal ganglia lacunes (TBGL) predicted 27% of CDR variability and 49% of the presence of dementia. Braak NFT, CMI and TBGL thresholds determined in a derivation sample yielded 0.88 sensitivity, 0.79 specificity and 0.85 correct classification rate for dementia in a validation sample. The same thresholds distinguished three groups of demented cases consistent with mixed dementia, pure vascular dementia and AD. These findings indicate that the clinical expression of the vascular component in mixed cases is highly dependent on lesion type and location as well as severity of concomitant AD-related pathology. Proposed thresholds for vascular and degenerative lesions predict the presence of dementia with great accuracy and provide a basis for distinguishing pure vascular dementia or AD from mixed case

    The impact of vascular burden on late-life depression.

    Get PDF
    Small vessel pathology and microvascular lesions are no longer considered as minor players in the fields of cognitive impairment and mood regulation. Although frequently found in cognitively intact elders, both neuroimaging and neuropathological data revealed the negative impact on cognitive performances of their presence within neocortical association areas, thalamus and basal ganglia. Unlike cognition, the relationship between these lesions and mood dysregulation is still a matter of intense debate. Early studies focusing on the role of macroinfarct location in the occurrence of post-stroke depression (PSD) led to conflicting data. Later on, the concept of vascular depression proposed a deleterious effect of subcortical lacunes and deep white matter demyelination on mood regulation in elders who experienced the first depressive episode. More recently, the chronic accumulation of lacunes in thalamus, basal ganglia and deep white matter has been considered as a strong correlate of PSD. We provide here a critical overview of neuroimaging and neuropathological sets of evidence regarding the affective repercussions of vascular burden in the aging brain and discuss their conceptual and methodological limitations. Based on these observations, we propose that the accumulation of small vascular and microvascular lesions constitutes a common neuropathological platform for both cognitive decline and depressive episodes in old age

    Neuropathological substrates and structural changes in late-life depression: the impact of vascular burden

    Get PDF
    A first episode of depression after 65years of age has long been associated with both severe macrovascular and small microvascular pathology. Among the three more frequent forms of depression in old age, post-stroke depression has been associated with an abrupt damage of cortical circuits involved in monoamine production and mood regulation. Late-onset depression (LOD) in the absence of stroke has been related to lacunes and white matter lesions that invade both the neocortex and subcortical nuclei. Recurrent late-life depression is thought to induce neuronal loss in the hippocampal formation and white matter lesions that affect limbic pathways. Despite an impressive number of magnetic resonance imaging (MRI) studies in this field, the presence of a causal relationship between structural changes in the human brain and LOD is still controversial. The present article provides a critical overview of the contribution of neuropathology in post-stroke, late-onset, and late-life recurrent depression. Recent autopsy findings challenge the role of stroke location in the occurrence of post-stroke depression by pointing to the deleterious effect of subcortical lacunes. Despite the lines of evidences supporting the association between MRI-assessed white matter changes and mood dysregulation, lacunes, periventricular and deep white matter demyelination are all unrelated to the occurrence of LOD. In the same line, neuropathological data show that early-onset depression is not associated with an acceleration of aging-related neurodegenerative changes in the human brain. However, they also provide data in favor of the neurotoxic theory of depression by showing that neuronal loss occurs in the hippocampus of chronically depressed patients. These three paradigms are discussed in the light of the complex relationships between psychosocial determinants and biological vulnerability in affective disorder

    Brain Aging in the Oldest-Old

    Get PDF
    Nonagenarians and centenarians represent a quickly growing age group worldwide. In parallel, the prevalence of dementia increases substantially, but how to define dementia in this oldest-old age segment remains unclear. Although the idea that the risk of Alzheimer's disease (AD) decreases after age 90 has now been questioned, the oldest-old still represent a population relatively resistant to degenerative brain processes. Brain aging is characterised by the formation of neurofibrillary tangles (NFTs) and senile plaques (SPs) as well as neuronal and synaptic loss in both cognitively intact individuals and patients with AD. In nondemented cases NFTs are usually restricted to the hippocampal formation, whereas the progressive involvement of the association areas in the temporal neocortex parallels the development of overt clinical signs of dementia. In contrast, there is little correlation between the quantitative distribution of SP and AD severity. The pattern of lesion distribution and neuronal loss changes in extreme aging relative to the younger-old. In contrast to younger cases where dementia is mainly related to severe NFT formation within adjacent components of the medial and inferior aspects of the temporal cortex, oldest-old individuals display a preferential involvement of the anterior part of the CA1 field of the hippocampus whereas the inferior temporal and frontal association areas are relatively spared. This pattern suggests that both the extent of NFT development in the hippocampus as well as a displacement of subregional NFT distribution within the Cornu ammonis (CA) fields may be key determinants of dementia in the very old. Cortical association areas are relatively preserved. The progression of NFT formation across increasing cognitive impairment was significantly slower in nonagenarians and centenarians compared to younger cases in the CA1 field and entorhinal cortex. The total amount of amyloid and the neuronal loss in these regions were also significantly lower than those reported in younger AD cases. Overall, there is evidence that pathological substrates of cognitive deterioration in the oldest-old are different from those observed in the younger-old. Microvascular parameters such as mean capillary diameters may be key factors to consider for the prediction of cognitive decline in the oldest-old. Neuropathological particularities of the oldest-old may be related to “longevity-enabling” genes although little or nothing is known in this promising field of future research

    Wave packet propagation by the Faber polynomial approximation in electrodynamics of passive media

    Full text link
    Maxwell's equations for propagation of electromagnetic waves in dispersive and absorptive (passive) media are represented in the form of the Schr\"odinger equation iΨ/t=HΨi\partial \Psi/\partial t = {H}\Psi, where H{H} is a linear differential operator (Hamiltonian) acting on a multi-dimensional vector Ψ\Psi composed of the electromagnetic fields and auxiliary matter fields describing the medium response. In this representation, the initial value problem is solved by applying the fundamental solution exp(itH)\exp(-itH) to the initial field configuration. The Faber polynomial approximation of the fundamental solution is used to develop a numerical algorithm for propagation of broad band wave packets in passive media. The action of the Hamiltonian on the wave function Ψ\Psi is approximated by the Fourier grid pseudospectral method. The algorithm is global in time, meaning that the entire propagation can be carried out in just a few time steps. A typical time step is much larger than that in finite differencing schemes, ΔtFH1\Delta t_F \gg \|H\|^{-1}. The accuracy and stability of the algorithm is analyzed. The Faber propagation method is compared with the Lanczos-Arnoldi propagation method with an example of scattering of broad band laser pulses on a periodic grating made of a dielectric whose dispersive properties are described by the Rocard-Powels-Debye model. The Faber algorithm is shown to be more efficient. The Courant limit for time stepping, ΔtCH1\Delta t_C \sim \|H\|^{-1}, is exceeded at least in 3000 times in the Faber propagation scheme.Comment: Latex, 17 pages, 4 figures (separate png files); to appear in J. Comput. Phy

    Brain Aging in the Oldest-Old

    Get PDF
    Nonagenarians and centenarians represent a quickly growing age group worldwide. In parallel, the prevalence of dementia increases substantially, but how to define dementia in this oldest-old age segment remains unclear. Although the idea that the risk of Alzheimer's disease (AD) decreases after age 90 has now been questioned, the oldest-old still represent a population relatively resistant to degenerative brain processes. Brain aging is characterised by the formation of neurofibrillary tangles (NFTs) and senile plaques (SPs) as well as neuronal and synaptic loss in both cognitively intact individuals and patients with AD. In nondemented cases NFTs are usually restricted to the hippocampal formation, whereas the progressive involvement of the association areas in the temporal neocortex parallels the development of overt clinical signs of dementia. In contrast, there is little correlation between the quantitative distribution of SP and AD severity. The pattern of lesion distribution and neuronal loss changes in extreme aging relative to the younger-old. In contrast to younger cases where dementia is mainly related to severe NFT formation within adjacent components of the medial and inferior aspects of the temporal cortex, oldest-old individuals display a preferential involvement of the anterior part of the CA1 field of the hippocampus whereas the inferior temporal and frontal association areas are relatively spared. This pattern suggests that both the extent of NFT development in the hippocampus as well as a displacement of subregional NFT distribution within the Cornu ammonis (CA) fields may be key determinants of dementia in the very old. Cortical association areas are relatively preserved. The progression of NFT formation across increasing cognitive impairment was significantly slower in nonagenarians and centenarians compared to younger cases in the CA1 field and entorhinal cortex. The total amount of amyloid and the neuronal loss in these regions were also significantly lower than those reported in younger AD cases. Overall, there is evidence that pathological substrates of cognitive deterioration in the oldest-old are different from those observed in the youngerold. Microvascular parameters such as mean capillary diameters may be key factors to consider for the prediction of cognitive decline in the oldest-old. Neuropathological particularities of the oldest-old may be related to "longevity-enabling" genes although little or nothing is known in this promising field of future research
    corecore