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Abstract

We estimate the growth of the Lebesgue constant of any Leja sequence for the unit disk. The main
application is the construction of new multivariate interpolation points in a polydisk (and in the Cartesian
product of many plane compact sets) whose Lebesgue constant grows (at most) like a polynomial.
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Let A be a set of d +1 pairwise distinct points in a compact set K in the complex plane. Given
a function f defined on A, the unique polynomial of degree at most d which coincides with f
on A is the Lagrange interpolation polynomial of f and is denoted by L[A; f ]. We have

L[A; f ] =

−
a∈A

f (a)ℓ(A, a; ·), (1)

where ℓ(A, a; ·) is the fundamental Lagrange interpolation polynomial (FLIP) corresponding to
a, that is, the unique polynomial of degree at most d such that ℓ(A, a; a) = 1 and ℓ(A, a; ·) = 0
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on A \ {a},

ℓ(A, a; z) =

∏
b∈A,b≠a

z − b

a − b
=

wA(z)

w′

A(a)(z − a)
where wA(z) =

∏
a∈A

(z − a), z ∈ C. (2)

The Lebesgue constant ∆(A) is the norm of the continuous operator L[A] : f ∈ C(K ) →

L[A; f ] ∈ C(K ). As is well known, ∆(A) is the uniform norm on K of the Lebesgue function
δ(A, ·) :=

∑
a∈A |ℓ(A, a; ·)|, that is,

∆(A) =

−
a∈A

|ℓ(A, a; ·)|


K

. (3)

In the multivariate case (A ⊂ CN ), Lagrange interpolation polynomials and Lebesgue constants
are defined in a similar way, see Section 6, with the (fundamental) differences that not every set
A (with a good cardinality) can be taken as an interpolation set and, even when interpolation
is possible, in general, the FLIPs no longer have a simple expression—a fact which makes
theoretical studies of multivariate Lebesgue constants difficult.

The Lebesgue constant is a basic object of interpolation theory because it controls the stability
of interpolation at A as well as the approximation capabilities of the interpolation polynomial via
the Lebesgue inequality

‖ f − L[A; f ]‖K ≤ (1 + ∆(A))distK ( f, Pd),

where d is the degree of interpolation, Pd denotes the space of polynomials of degree at most d
and distK ( f, Pd) the uniform distance on K between f and Pd . A large part of classical Lagrange
interpolation theory is devoted to the study of Lebesgue constants of natural interpolation points,
such as, for instance, the roots of standard orthogonal polynomials. Unlike the classical cases,
which, it seems, always deal with arrays of points (when we go from degree d − 1 to degree
d , we take d + 1 new points), in this note we exhibit sequences (ek : k ∈ N) in the unit disk
D := {|z| ≤ 1} such that ∆({e0, . . . , ek}) grows at most like k ln k. These sequences are Leja
sequences for the unit disk. They are defined by a simple extremal metric property (Section 2).
Using classical works of Alper, we may then construct sequences whose Lebesgue constant
grows polynomially not only for a disk but also for a large class of plane compact sets (Section 5).
The main application (and motivation) of our study is the construction of explicit multivariate
interpolation sets (in the Cartesian products on many plane compact sets) having a Lebesgue
constant that grows polynomially (Section 6). Very few such examples are currently available.
We mention the beautiful Padua points recently discovered in the square of R2 and which have
a Lebesgue constant that grows like ln2 d where d is the degree, but their construction seems to
be hardly generalizable to the higher dimensional cases; see [5]. The other striking properties of
our multivariate interpolation points are that they are nested in the sense that the points used for
the degree d − 1 are still used for the degree d .

Let us finally point out that we may define Leja sequences for every non-empty compact
subset of the plane and, in a recent interesting paper, Taylor and Totik [14] showed that the
Lebesgue constant of Leja sequences for many plane compact sets has a sub-exponential growth.
These sequences took their name from Franciszek Leja which used them in a classical paper on
the approximation of exterior conformal mappings [13] but they were first considered by Albert
Edrei in 1939; see [10].
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2. Leja sequences

2.1. Definition and structure

A k-tuple Ek = (e0, . . . , ek−1) ∈ Dk with e0 = 1 is a k-Leja section for the unit disk D if, for
j = 1, . . . , k − 1, the ( j + 1)th entry e j maximizes the product of the distances to the j previous
points, that is

j−1∏
m=0

|e j − em | = max
z∈D

j−1∏
m=0

|z − em |, j = 1, . . . , k − 1.

The maximum principle implies that all the ei ’s actually lie on the unit circle ∂ D. A sequence
E = (ek : k ∈ N) for which Ek := (e0, . . . , ek−1) is a k-Leja section for every k ∈ N is called a
Leja sequence for D.

The first purpose of this note is to estimate the Lebesgue constant ∆(Ek). As recalled in (3),
it is given by

∆(Ek) =

k−1−
j=0

ℓ(Ek, e j ; ·)


D

=

k−1−
j=0

ℓ(Ek, e j ; ·)


∂ D

. (4)

The second equality is perhaps not obvious. It follows for instance from the maximum principle
applied to the Lebesgue function δ(Ek, ·) which is subharmonic on C.

It is not difficult to describe the structure of a Leja sequence for D. The following theorem is
proved in [3]. If A is the r -tuple (a0, . . . , ar−1) and B is the s-tuple (b0, . . . , bs−1) we denote by
(A, B) the r + s-tuple (a0, . . . , ar−1, b0, . . . , bs−1).

Theorem 1. The underlying set of a 2n-Leja section for D is formed of the 2n th roots of unity. If
E2n+1 is a 2n+1-Leja section then there exist a 2n-root ρ of −1 and a 2n-Leja section U2n such
that E2n+1 = (E2n , ρU2n ).

Repeated applications of this theorem shows that if Ek is a k-Leja section with k =

2n1 + 2n2 + · · · + 2ns , n1 > n2 > · · · > ns ≥ 0, then the underlying set of Ek is formed
of the union of images under certain rotations of the complete sets of roots of unity of order
2n j , j = 1, . . . , s. Also, if 2n

+ 1 ≤ k ≤ 2n+1, we have Ek = (E2n , ρUk−2n ).
The structure of a Leja sequence suggests that the binary expansion of k plays a role in the

behavior of ∆(Ek). We also may expect to use a classical result of Gronwall [11,7] showing that
the Lebesgue constant for complete sets of roots of unity grows like the logarithm of the degree.
Indeed, since E2n is a complete set of roots of unity of degree 2n , Gronwall theorem ensures that
∆(E2n ) = O(n), n → ∞; see below.

Most of our results strongly rely on Theorem 1 and are obtained by successive reductions
of the lengths of the Leja sections considered. This will be generally indicated by the use of a
laconic expression like ‘by continuing in this way’. Further specific consequences of Theorem 1
are given in Section 2.3.

2.2. An example

Given a sequence of complex numbers η = (ηs : s ∈ N) such that η2s

s = −1, we may define a
Leja sequence E = E(η) such that E2n+1 = (E2n , ηn E2n ), n ∈ N. Such a Leja sequence will be
said to be simple. There are 2n(n+1)/2 simple 2n+1-Leja sections. The elements of a simple Leja
sequence are readily expressed in terms of η.
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Lemma 2. If E(η) = (an : n ∈ N) and k = 2n
+
∑n−1

j=0 ε j 2 j , ε j ∈ {0, 1}, then

ak = ηnη
εn−1
n−1 η

εn−2
n−2 · · · η

ε1
1 η

ε0
0 , k ≥ 1. (5)

Proof. Since

E2n+1 = (E2n , ηn E2n ) = (a0, . . . , a2n−1, ηna0, ηna1, . . . ηna2n−1),

we have ak = ηnak−2n . Now if i is the biggest index for which εi = 1 then k − 2n
= 2i

+∑i−1
j=0 ε j 2 j and the same reasoning as above gives ak−2n = ηi ak−2n−2i so that ak = ηnηi

ak−2n−2i . Continuing in this way, we obtain Eq. (5). �

2.3. Consequences of Theorem 1

The first lemma uses the structure theorem to compute the polynomial wEk (as defined in (2))
for a Leja section Ek and the second one computes the sup norm of this polynomial on D.

Lemma 3. Let E be a Leja sequence for D. If k = 2n1 +· · ·+2ns with n1 > n2 > · · · > ns ≥ 0,
then, for every z ∈ C, we have

k−1∏
m=0

(z − em) = c

z2n1

− 1


·


(zρ−1

1 )2n2
− 1


·


(zρ−1

1 ρ−1
2 )2n3

− 1


· · ·


(zρ−1

1 . . . ρ−1
s−1)

2ns
− 1


, (6)

where |c| = 1 and ρ2n j

j = −1 for every 1 ≤ j ≤ s − 1.

Proof. Theorem 1 tells us that Ek = (E2n1 , ρ1Uk−2n1 ) with ρ2n1
1 = −1 and Uk−2n1 a (k − 2n1)-

Leja section, say Uk−2n1 = (u0 = 1, u1, . . . , uk−2n1−1). Since the 2n1 first elements of E form a
complete set of roots of unity of degree 2n1 , we have

k−1∏
m=0

(z − em) =

2n1−1∏
m=0

(z − em) ·

k−1∏
m=2n1

(z − em) (7)

= [z2n1
− 1] ·

k−2n1−1∏
m=0

(z − ρ1um) (8)

= ρk−2n1

1 · [z2n1
− 1] ·

k−2n1−1∏
m=0

(ρ−1
1 z − um). (9)

Now, since Uk−2n1 is itself a Leja section and k − 2n1 = 2n2 + · · · + 2ns we may factorize the
third factor in the same fashion and continuing in this way we arrive at the required expression
with c = ρk−2n1

1 ρk−2n1−2n2

2 · · · ρ2ns

s−1. �

Lemma 4. Under the same assumptions as in Lemma 3, we have

k−1∏
m=0

|ek − em | = 2s . (10)
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Proof. Eq. (9) in the proof of the previous lemma yields

k−1∏
m=0

|ek − em | = |e2n1
k − 1| ·

k−2n1−1∏
m=0

|ρ−1
1 ek − um |.

However, as above, in view of Theorem 1, ek = ρ1uk−2n1 . Hence, since uk−2n1 is a 2n1 th root of
unity and ρ2n1

1 = −1, we have

k−1∏
m=0

|ek − em | = 2 ·

k−2n1−1∏
m=0

|uk−2n1 − um |.

Likewise, using the fact that Uk−2n1 is a Leja section and k − 2n1 = 2n2 + · · · + 2ns , we may
apply the same idea to

∏k−2n1−1
m=0 |uk−2n1 − um | to obtain

k−2n1−1∏
m=0

|uk−2n1 − um | = 2
k−2n1−2n2−1∏

m=0

|vk−2n1−2n2 − vm |,

where the vm are the points of a certain Leja section. Continuing in this way we arrive to
(10). �

We now give another consequence of Theorem 1 regarding the form of the FLIPs for Leja
points.

Lemma 5. Let 2n
+ 1 ≤ k ≤ 2n+1

− 1 and let Ek = (E2n , ρUk−2n ) be a k-Leja section for D.
(1) If 0 ≤ j ≤ 2n

− 1 then

ℓ(Ek, e j ; z) = ℓ(E2n , e j ; z) ·

k−1∏
m=2n

(z − em)/(e j − em), z ∈ C.

(2) If 2n
≤ j ≤ k − 1 then

ℓ(Ek, e j ; z) = ℓ(Uk−2n , u j−2n ; ρ−1z) · (1 − z2n
)/2, z ∈ C.

Proof. We easily check that the polynomials on the right-hand sides are polynomials of degree
k − 1 that vanish at es for s ≠ j but take the value 1 at e j . In the second case, we need again to
use that, when 2n

≤ j ≤ k − 1(≤ 2n+1
− 2), e2n

j = −1 or, equivalently, ρ2n
= −1. �

3. The estimates on the Lebesgue constants

3.1. Upper bound

Here is the key estimate from which the more general statements presented in the last two
sections are derived.

Theorem 6. Let 2n
+ 1 ≤ k ≤ 2n+1

− 1. If Ek = (E2n , ρUk−2n ) is a k-Leja section for D then

∆(Ek) ≤ 2n∆(E2n ) + ∆(Uk−2n ). (11)

The proof of this result is given in Section 4. Our result on the asymptotic behavior of the
Lebesgue constant of a Leja sequence is an immediate consequence of Theorem 6.

Corollary 7. Let E be a Leja sequence for D. As k → ∞,∆(Ek) = O(k ln k).

The constant involved in the notation O does not depend on E .
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Proof. First recall that since E2n is a complete set of 2n-roots of unity, the theorem of Gronwall
cited above gives ∆(E2n ) = O(ln(2n)) = O(n). Hence, in view of inequality (11), we have

∆(Ek) = O

n2n

+ ∆(Uk−2n ), 2n
+ 1 ≤ k ≤ 2n+1

− 1.

Since Uk−2n itself is a Leja section, we may bound its Lebesgue constant in the same fashion.
Continuing in this way, if k = 2n

+
∑n−1

j=0 ε j 2 j , ε j ∈ {0, 1}, we arrive at

∆(Ek) = O


n2n

+

n−1−
j=0

j2 jε j


= O(k ln k). � (12)

3.2. Lower bound

As shown by the next result, the Lebesgue constant of any Leja sequence cannot grow slower
than k. We conjecture that ∆(Ek) ≤ k for every k.

Theorem 8. For every Leja sequence E and every n ∈ N⋆ we have ∆(E2n−1) = 2n
− 1.

Proof. We know that E2n−1 is formed of the 2n th roots of unity with only one missing. The
property is therefore a consequence of Theorem 9. �

Theorem 9. Let ak = exp(2ikπ/n), R = {ak : k = 0, . . . , n − 1} and R j
= R \ {a j } with

0 ≤ j ≤ n − 1. Then we have ∆(R j ) = n − 1.

Lemma 10. Let a be an nth root of unity, n ≥ 3, a ≠ 1. We have zn
− 1

z − 1

 · |a − 1| ·

[
1

|z − a|
+

1
|z − a|

]
≤ 2n, |z| = 1. (13)

Proof. We call F(z, a) the left-hand side of (13). Since F is invariant by conjugation, we may
assume that arg(z) ∈ [0, π] and arg(a) ∈]0, π]. Setting z = exp(iθ) and a = exp(iφ), a simple
calculation shows that

F(z, a)

|a − 1||zn − 1|
=

1
4

[ 1
sin(θ/2) sin((θ − φ)/2)

+  1
sin(θ/2) sin((θ + φ)/2)

] .

(A) We assume 0 < φ ≤ θ ≤ π . In that case, sin(θ/2), sin((θ − φ)/2) and sin((θ + φ)/2) are
nonnegative, hence

F(z, a)

|a − 1||zn − 1|
=

1
4

[
1

sin(θ/2) sin((θ − φ)/2)
+

1
sin(θ/2) sin((θ + φ)/2)

]
.

Returning to z and a, using |1 − a| = |1 − a| and an easily checked expansion, we find

F(z, a) = |a − 1|

a zn
− 1

(z − 1)(z − a)
+

zn
− 1

(z − 1)(z − a)


=

 (a − 1)(zn
− 1)

(z − 1)(z − a)
+

(1 − a)(zn
− 1)

(z − 1)(z − a)


=

n−2−
k=0

zk(an−k−1
− an−k−1)

 ≤

n−2−
k=0

|2 sin((k + 1)φ)| ≤ 2(n − 1) < 2n. (14)
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(B) We now assume 0 ≤ θ ≤ φ ≤ π . In that case, sin(θ/2), sin((θ + φ)/2) and − sin
((θ − φ)/2) are nonnegative. Thus

F(z, a)

|a − 1||zn − 1|
=

1
4

[
−1

sin(θ/2) sin((θ − φ)/2)
+

1
sin(θ/2) sin((θ + φ)/2)

]
,

and working as in the previous case, we get

F(z, a) = |a − 1|

−a
zn

− 1
(z − 1)(z − a)

+
zn

− 1
(z − 1)(z − a)


=

 (1 − a)(zn
− 1)

(z − 1)(z − a)
+

(1 − a)(zn
− 1)

(z − 1)(z − a)


=

n−2−
k=0

zk


2 − an−k−1
− an−k−1

 =

n−2−
k=0

zk


2 − 2 cos

(k + 1)φ


≤

n−2−
k=0


2 − 2 cos


(k + 1)φ


=

n−1−
k=1


2 − 2 cos(kφ)


= 2(n − 1) − 2

n−1−
k=1

cos(kφ) = 2n. �

Proof of Theorem 9. Since Lebesgue constants are invariant under rotation, we may assume that
j = 0 so that the missing point a j equals 1.

We first prove ∆(R0) ≥ n − 1. In view of (2), with wR0(z) = w(z) = (zn
− 1)/(z − 1), the

FLIPs for R0 are given by

ℓ(R0, a; z) =
w(z)

w′(a)(z − a)
=

(a − 1)

nan−1

zn
− 1

(z − 1)(z − a)
.

We have w(1) = n and it follows that

∆(R0) ≥

−
an=1,a≠1

|ℓ(R0, a; 1)| =

−
an=1,a≠1

1 = n − 1.

This shows that ∆(R0) ≥ n − 1.
To prove the converse, we first assume that n is odd so that the interpolation points can be

written as

R0
= {1} ∪


a∈B

{a, a},

with ♯B = (n − 1)/2. Then−
an=1,a≠1

|ℓ(R0, a; z)| =

−
a∈B


|ℓ(R0, a; z)| + |ℓ(R0, a; z)|


(15)

=
1
n

−
a∈B

 zn
− 1

z − 1

 · |a − 1| ·

[
1

|z − a|
+

1
|z − a|

]
≤

n − 1
2

2n

n
= n − 1, |z| = 1, (16)
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where we used the estimate given in Lemma 10. This shows that ∆(R0) ≤ n − 1. (Recall that,
according to (4), it suffices to bound the Lebesgue function on the unit circle.) When n is even,
the proof is similar with the sole difference that a = −1 must be treated separately. �

4. Proof of Theorem 6

The starting point is Eq. (4) which gives

∆(Ek) ≤

2n
−1−

j=0

ℓ(Ek, e j ; ·)


D

+

 k−1−
j=2n

ℓ(Ek, e j ; ·)


D

,

2n
+ 1 ≤ k ≤ 2n+1

− 1. (17)

The estimate of the first sum is the difficult part. Our bound is based on the following lemma.

Lemma 11. Let Ek = (e0, . . . , ek−1) be a k-Leja section with 0 < k ≤ 2n
− 1. If a is a 2n-root

of −1 then
∏k−1

m=0 |ek − em | ≤ 2n ∏k−1
m=0 |a − em |.

To prove this lemma we need the following classical inequalities that we state as a lemma.

Lemma 12. (1) If 0 ≤ α ≤ π/2 then sin α ≥ 2α/π .
(2) If m ∈ N⋆ and α ∈ R then 2m

| sin α| ≥ 2m
| sin α cos α| ≥ | sin 2mα|.

Proof. The second inequality follows at once from repeated applications of

| sin α| ≥ | sin α cos α| = | sin 2α|/2. �

Proof of Lemma 11. We assume that

k = 2n1 + · · · + 2ns with n − 1 ≥ n1 > · · · > ns ≥ 0, (18)

and use the same notation as in Lemma 3. In particular ρ2n j

j = −1 so that for some t j ∈ N,

θ j := arg(ρ−1
j ) = (2t j + 1)π/2n j , 1 ≤ j ≤ s − 1. (19)

Eq. (6) yields

k−1∏
m=0

|a − em | = 2s
s−1∏
j=0

| sin 2n j+1−1(θ0 + · · · + θ j )|,

where arg a = θ0 = (2t0 + 1)π/2n . Thus, in view of (10), the lemma will be proved if we show
that

s−1∏
j=0

sin 2n j+1−1(θ0 + · · · + θ j )

 ≥ 1/2n . (20)

We first treat the case s = 1, that is, k = 2n1 . Here we just need to prove thatsin 2n1−1θ0

 ≥ 1/2n .

Since

2n1−1θ0 = π/2n−n1+1
+ 2t0π/2n−n1+1,
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we havesin

2n1−1θ0

 ≥ sin

π/2n−n1+1

≥ (2/π)π/2n−n1+1
≥ 1/2n,

where we use Lemma 12(1).
We now assume s ≥ 2 in (18). We first look at the factor corresponding to j = s − 1 in (20).

Applying Lemma 12(2) with m = ns−1 − ns and α = 2ns−1(θ0 + · · · + θs−1), we obtainsin 2ns−1(θ0 + · · · + θs−1)

 ≥ 2ns−ns−1

sin 2ns−1−1(θ0 + · · · + θs−1)

 . (21)

But, in view of (19),

2ns−1−1θs−1 = 2ns−1−1(2ts−1 + 1)π/2ns−1 = π/2 + ts−1π

which givessin 2ns−1−1(θ0 + · · · + θs−1)

 =

cos 2ns−1−1(θ0 + · · · + θs−2)

 . (22)

Hence, (21) becomessin 2ns−1(θ0 + · · · + θs−1)

 ≥ 2ns−ns−1

cos 2ns−1−1(θ0 + · · · + θs−2)

 . (23)

We now concentrate on the last two factors of (20), those corresponding to j = s − 1 and
j = s − 2. Thanks to (23), we have

s−1∏
j=s−2

sin 2n j+1−1(θ0 + · · · + θ j )


≥ 2ns−ns−1

sin 2ns−1−1(θ0 + · · · + θs−2) · cos 2ns−1−1(θ0 + · · · + θs−2)

 . (24)

Another use of Lemma 12(2) with m = ns−2 − ns−1 yieldssin 2ns−1−1(θ0 + · · · + θs−2) · cos 2ns−1−1(θ0 + · · · + θs−2)


≥ 2ns−1−ns−2

sin 2ns−2−1(θ0 + · · · + θs−2)

 (25)

and, again, since

2ns−2−1θs−2 = 2ns−2−1(2ts−2 + 1)π/2ns−2 = π/2 + ts−2π,

the absolute value of the sine on the right-hand side of (25) actually equals | cos 2ns−2−1(θ0 +

· · · + θs−3)|. Thus, at this point, taking into account (24) and (25), we have

s−1∏
j=s−3

sin 2n j+1−1(θ0 + · · · + θ j )


≥ 2ns−ns−2

sin 2ns−2−1(θ0 + · · · + θs−3) · cos 2ns−2−1(θ0 + · · · + θs−3)

 . (26)

Continuing in this fashion, we finally arrive at

s−1∏
j=0

sin 2n j+1−1(θ0 + · · · + θ j )

 ≥ 2ns−n1

sin 2n1−1θ0 · cos 2n1−1θ0


= 2ns−n1−1

| sin 2n1θ0|.
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Now, working as in the case s = 1 above, we obtain

2ns−n1−1
| sin 2n1θ0| ≥ 2ns−n1−1(2/π)π/2n−n1 = 2ns−n

≥ 2−n .

This completes the proof of the lemma. �

Conclusion of the proof of Theorem 6. We assume that E2n+1 = (E2n , ρU2n ) and 2n
+ 1 ≤

k ≤ 2n+1
− 1. As indicated above, starting from (17), we want to estimate2n

−1−
j=0

|ℓ(Ek, e j ; ·)|


D

and

 k−1−
j=2n

|ℓ(Ek, e j ; ·)|


D

.

(A) Thanks to Lemma 5(2), we have k−1−
j=2n

ℓ(Ek, e j ; ·)


D

≤

 |1 − z2n
|

2


D

 k−1−
j=2n

ℓ(Uk−2n , u j−2n ; ρ−1
·)


D

= ∆(Uk−2n ).

(B) On the other hand, in view of Lemma 5(1), for every z in D,

2n
−1−

j=0

|ℓ(Ek, e j ; z)| =

2n
−1−

j=0

ℓ(E2n , e j ; z)
 k−1∏

m=2n

|z − em |/|e j − em |



≤ ∆(E2n ) max
j=0,...,2n−1

k−1∏
m=2n

|z − em |/|e j − em |.

Hence, to prove the theorem, it suffices to show that k−1∏
m=2n

|z − em |

|e j − em |


D

≤ 2n, 0 ≤ j ≤ 2n
− 1.

To see this, we observe that for 0 ≤ j ≤ 2n
− 1 and z ∈ D, we have

k−1∏
m=2n

|z − em | =

k−1−2n∏
m=0

|ρ−1z − um | ≤

k−1−2n∏
m=0

|uk−2n − um |

≤ 2n
k−1−2n∏

m=0

|ρ−1e j − um | = 2n
k−1∏

m=2n

|e j − em |, (27)

where the equalities come from the relation E2n+1 = (E2n , ρU2n ); the first inequality follows
from the fact that U2n is a Leja section and the second inequality is given by Lemma 11. The
use of this lemma is permitted since (ρ−1e j )

2n
= −1. Indeed ρ2n

= −1 and, since 0 ≤ j ≤

2n
− 1, e2n

j = 1. �

5. Alper-smooth Jordan curves

Using classical works of Alper [1,2] as in [3], we now show that if K is a compact set whose
boundary is an Alper-smooth Jordan curve (see below) and φ denotes the exterior conformal
mapping from C \ D onto C \ K then the image under φ of every Leja sequence for the disk
(which lies in ∂K ) still has a Lebesgue constant (with respect to K ) that grows (at most) like a
polynomial.

Let Γ be a smooth Jordan curve. The angle between the tangent at Γ (s) and the positive real
axis is denoted by θ(s) where s is the arc-length parameter. Following a terminology used by
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Kövari and Pommerenke [12], we say that Γ is Alper-smooth if the modulus of continuity ω of
θ satisfies∫ h

0

ω(x)

x
| ln x |dx < ∞.

Twice continuously differentiable Jordan curves are Alper-smooth.
An important property of the exterior conformal mapping φ is the following (see [1, Sections

1 and 2] or [2, Eq. (3) p. 45]). There exist positive constants M1 < M2 such that

0 < M1 ≤

φ(z) − φ(w)

z − w

 ≤ M2 < ∞, z, w ∈ ∂ D, z ≠ w. (28)

Theorem 13. Assume that K is a compact set whose boundary is an Alper-smooth Jordan curve.
We denote by φ the conformal mapping of the exterior to the unit disk onto the exterior of K . If
E = (ek : k ∈ N) is a Leja sequence for D then the Lebesgue constant ∆(φ(Ek)) grows at most
like a polynomial in k as k → ∞. Here φ(Ek) := (φ(e0), . . . , φ(ek−1)).

We need the following lemma.

Lemma 14. Under the same assumptions as in the theorem, for any w on the unit circle,
w ≠ ei , i = 0, . . . , k − 1, we have

Ck(K )
1
ck

≤

k−1∏
l=0

|φ(w) − φ(el)|

|w − el |
≤ Ck(K )ck, (29)

where C(K ) is the logarithmic capacity of K ,

ck = exp


A

s−
j=0

ϵ j


, k =

s−
j=0

ϵ j 2 j , ϵ j ∈ {0, 1},

and A is a positive constant depending only on K .

Proof. The proof can be found in [3, Lemma 3]. It is an adaptation of a method due to Alper. �

Proof of Theorem 13. As in (4), we have

∆(φ(Ek)) =

k−1−
j=0

ℓ(φ(Ek), φ(e j ); ·)


∂K

.

Thus, since ∂K = φ(∂ D), we just need to consider terms of the form |ℓ(φ(Ek), φ(e j ); φ(w))|

with |w| = 1.
Now, since, for w ≠ el , l = 0, . . . , k − 1,

k−1∏
l=0,l≠m

|φ(w) − φ(el)|

|w − el |
=

k−1∏
l=0

|φ(w) − φ(el)|

|w − el |
×

|w − em |

|φ(w) − φ(em)|
, 0 ≤ m ≤ k − 1.

Eqs. (28) and (29) give

Ck(K )

M2ck
≤

k−1∏
l=0,l≠m

|φ(w) − φ(el)|

|w − el |
≤

Ck(K )ck

M1
.
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By continuity, this inequality remains true for w = em . Next, dividing the estimates for w and
for em , we obtain for w ≠ el , l ≠ m,ℓφ(Ek), φ(em), φ(w)

 ≤
M2

M1
c2

k ·
ℓEk, em, w

 .
Again by continuity, the above inequality holds for every w on the unit circle. Now applying the
inequality for every point em we get

∆(φ(Ek)) ≤
M2

M1
c2

k∆(Ek),

from which the conclusion readily follows since, in view of Lemma 14, ck = O(k A/ ln(2)). �

As shown by the proof ∆(φ(Ek)) grows (at most) like ∆(Ek) apart from the factor c2
k =

O(k2A/ ln(2)). A precise definition of A is given in [3, Proof of Lemma 3, Eq. (44)]. The way this
number depends on the geometry of K does not seem to be simple. It would be interesting to
have estimates on A using as little information as possible on the Jordan curve that defines K .

6. Multivariate interpolation sets

6.1. Intertwining of block-unisolvent arrays

The dimension of the space Pn(CN ) of complex polynomials of (total) degree at most n in

N complex variables is


n+N
n


. A finite set A formed of


n+N

n


distinct points is said to be

unisolvent of degree n if Lagrange interpolation at the points of A by polynomials of degree
at most n is well defined. The condition is satisfied if and only if A is not included in an
algebraic hypersurface of degree ≤ n. In that case, the Lagrange interpolation polynomial of
a function f , still denoted by L[A; f ], is given by (1) but the FLIPs ℓ(A, a; ·) no longer have a
simple expression. If K is a compact subset in CN containing A, the Lebesgue constant ∆(A)

or ∆(A | K ) is still defined as the operator norm on C(K ) of the interpolation operator and is
given by the multivariate form of (3). For basic definitions and facts on multivariate Lagrange
interpolation from the complex analysis point of view, the reader may consult [4].

It is useful to label the elements of a unisolvent set with multi-indexes. The length
∑N

i=1 αi of
an N -index α = (α1, . . . , αN ) is denoted by |α|. The indexes are ordered according to the graded
lexicographic order ≺. Recall that α ≺ β if |α| < |β| or |α| = |β| and the leftmost non-zero
entry of α − β is negative.

We say that an


n+N
n


-tuple A = (xα = (xα1 , . . . , xαN ) : |α| ≤ n) is block-unisolvent of

degree n if for every i, i ∈ {0, 1, . . . , n}, (the underlying set of) the i th block Bi (A) := (xα :

|α| ≤ i) is unisolvent of degree i . Note that when A is a tuple of unidimensional interpolation
points, Bi (A) is simply formed of the first i + 1 entries of A.

Given two block-unisolvent families of degree n,

A = (xα1 = (xα1
1
, . . . , xα1

N1
) : |α1

| ≤ n) in CN1 and

B = (yα2 = (yα2
1
, . . . , yα2

N2
) : |α2

| ≤ n) in CN2 ,

the intertwining of A and B is

A ⊕ B =


(xα1 , yα2) :

(α1, α2)

 ≤ n


.
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It is known [8, Theorem 3.1] that A ⊕ B is itself block-unisolvent of degree n with blocks

Bi (A ⊕ B) = Bi (A) ⊕ Bi (B), 0 ≤ i ≤ n. (30)

Note that, by repeating the process, we may construct the intertwining of any finite number of
block-unisolvent families of same degree. In particular, iterations of (30) give

Bi (A1 ⊕ A2 ⊕ · · · ⊕ AN ) = Bi (A1) ⊕ Bi (A2) ⊕ · · · ⊕ Bi (AN ). (31)

6.2. The Lebesgue constant of the intertwining of two block-unisolvent family

Our main tool is the following result.

Theorem 15. Let K be a compact set in CN1+N2 containing A ⊕ B. We denote by K1 (resp., K2)
the projection of K on CN1 (resp., CN2 ). We have

∆(A ⊕ B|K ) ≤ 4


n + N1 + N2

n

 −
i+ j≤n

∆ (Bi (A)|K1) · ∆


B j (B)|K2

.

Proof. See [8, Theorem 4.4]. �

In the notation for the Lebesgue constant, we indicate the compact set (containing the
interpolation points) with respect to which the Lebesgue constant is computed. In order to
estimate the Lebesgue constant of A ⊕ B, we must therefore use a bound for all the blocks
of A and B. The above theorem certainly greatly overestimates the Lebesgue constant but it is
sufficient to prove our main application in the following subsection.

6.3. Intertwining of Leja sections and related families

For i = 1, . . . , N , let E (i)
= (e(i)

n : n ∈ N) denote a Leja sequence for D and Ki a plane
compact set whose boundary is an Alper-smooth Jordan curve (with conformal exterior mapping
φi : C \ D → C \ Ki ). For every n ∈ N, we define a family PN ,n as

PN ,n = φ1(E (1)
n+1) ⊕ · · · ⊕ φN (E (N )

n+1).

The


n+N
n


points of PN ,n lie in K := K1 × K2 × · · · × KN ⊂ CN and are given by the relation

PN ,n =


pα =


φ1(e

(1)
α1

), . . . , φN (e(N )
αN

)


: |α| ≤ n


.

The family PN ,n is block-unisolvent of degree n in CN . It is obtained by induction via the
relations P1,n = φ(E (1)

n+1) and

Pd+1,n = Pd,n ⊕ φd+1


E (d+1)

n+1


, 1 ≤ d ≤ N − 1. (32)

We obtain the following theorem as a consequence of Theorems 13 and 15. The proof relies
on the fact that PN ,n is a sub-family of PN ,n+1.

Theorem 16. The Lebesgue constant ∆(PN ,n) grows at most like a polynomial in n as n → ∞.

Here the Lebesgue constant is computed with respect to K , the Cartesian product of the Ki ’s.
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Proof. The proof is by induction on N .
The case N = 1 is given by Theorem 13. We assume that the estimate holds true up to N and

prove it for N + 1. In view of (32) and Theorem 15, we have

∆(PN+1,n) ≤ 4


n + N + 1
n

 −
i+ j≤n

∆


Bi (PN ,n)

· ∆


B j (φ(E (N+1)

n+1 ))


, (33)

where we use the previous notation for the blocks of both factors. Now, the important point is
that

Bi (PN ,n) = PN ,i and B j (φ(E (N+1)
n+1 )) = φ(E (N+1)

j+1 ),

where we use (31) for the first equality. Eq. (33) thus becomes

∆(PN+1,n) ≤ 4


n + N + 1
n

 −
i+ j≤n

∆

PN ,i


· ∆


φ(E (N+1)

j+1 )


. (34)

Now, in view of Theorem 13, for some constant CN+1 we have ∆

φ(E (N+1)

j+1 )


= O( jCN+1)

and the claim now readily follows from (34) and the induction hypothesis. �

In the case of an intertwining of Leja sequences, inequality (34) together with Corollary 7
yields the (almost certainly pessimistic) bound

∆


E (1)
n+1 ⊕ E (2)

n+1 ⊕ · · · ⊕ E (N )
n+1


= O


n(N 2

+7N−6)/2(ln n)N


, n → ∞.

The proof also shows that the intertwining of sequences having a Lebesgue constant growing
sub-exponentially also has a Lebesgue constant that grows sub-exponentially. Thus starting from
Leja sequences for compact Ki of the kind considered in [14], we obtain sets of interpolation
points whose Lebesgue constant grows at most sub-exponentially.

6.4. Application to the construction of weakly admissible meshes

It will be shown in a forthcoming paper that the projections on the real axis of Leja sequences
for D still have a Lebesgue constant that grows polynomially. Here, we conclude with a few
words on the connection with a topic of recent interest. Let Ω be a compact set in CN and for
n ∈ N a finite subset An of Ω . We say that (An : n ∈ N) is a weakly admissible mesh for Ω if
the following two conditions are satisfied.

(1) The cardinality of An grows sub-exponentially (i.e. (♯An)1/n
→ 1 as n → ∞).

(2) There exists a sequence Mn growing sub-exponentially such that

‖p‖Ω ≤ Mn‖p‖An , p ∈ Pn(CN ).

Admissible meshes are good evaluation points for approximation by discrete least squares
polynomials [9]. They also contain good points for Lagrange interpolation that, in principles, can
be numerically retrieved [6]. However, for computational reasons, it is desirable to have both Mn
and the cardinality of the An as small as possible; see [6]. Both conditions however compete with
each other and such meshes are not easy to produce. An acceptable compromise is obtained with
meshes having both the cardinality of An and the constant Mn growing at most polynomially.
Now, it is readily seen that (new) examples of such meshes are given by finite unions of images
of sets of the form PN ,n under affine mappings (for the union of the corresponding compact sets).
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