510 research outputs found

    Visuomotor Transformation for the Lead Leg Affects Trail Leg Trajectories During Visually Guided Crossing Over a Virtual Obstacle in Humans

    Get PDF
    When walking around a room or outside, we often need to negotiate external physical objects, such as walking up stairs or stepping over an obstacle. In previous studies on obstacle avoidance, lead and trail legs in humans have been considered to be controlled independently on the basis of visual input regarding obstacle properties. However, this perspective has not been sufficient because the influence of visuomotor transformation in the lead leg on the trail leg has not been fully elucidated due to technical limitations in the experimental tasks of stepping over physical obstacles. In this study, we investigated how visuomotor transformation in the lead leg affected movement trajectories in the trail leg using a visually guided task of crossing over a virtual obstacle. Trials for stepping over a physical obstacle were established followed by visually guided tasks in which cursors corresponding to the subject’s lead and trail limb toe positions were displayed on a head-mounted display apparatus. Subjects were instructed to manipulate the cursors so that they precisely crossover a virtual obstacle. In the middle of the trials, the vertical displacement of the cursor only in the lead leg was reduced relative to the actual toe movement during one or two consecutive trials. This visuomotor perturbation resulted in higher elevation not only in the lead limb toe position but also in the trail limb toe trajectories, and then the toe heights returned to the baseline in washout trials, indicating that the visuomotor transformation for obstacle avoidance in the lead leg affects the trail leg trajectory. Taken together, neural resources of limb-specific motor memories for obstacle crossing movements in the lead and trail legs can be shared based on visual input regarding obstacle properties

    Region specificity of rectus femoris muscle for force vectors in vivo.

    Get PDF
    To examine the region specificity within the rectus femoris (RF) for knee extension and hip flexion force directions, three force components around the ankle were measured during intramuscular electrical stimulation applied to six parts of the RF: a proximal and medial part, a proximal and lateral part, a middle and medial part, a middle and lateral part, a distal and medial part, and a distal and lateral part. As a result, the exerted force directions in all of the subjects were variable in all regions, and the proximal region of the RF was the dominant contributor to the hip flexion moment. In addition, the force in the lateral region of the RF, rather than that in the medial region, denoted the lateral direction. These results suggest that divergent regions of muscle fibers within the RF are responsible for different functions in determining the force direction

    ABSENT MUSCLE COORDINATION PATTERNS AND REDUCED FORCE EXERTION IN THE NOVICE OF CLEAN EXERCISE

    Get PDF
    The clarification of the problems to perform the clean in novice obtains several suggestions for technical guidance. We aimed to identify the control of muscle coordination patterns and related kinetic problems during the clean. Five experienced participants (EXP) and five novices (NOV) performed the clean. The synchronous activation patterns among several muscles were extracted using a decomposition technique. The median number of patterns in NOV (2) was smaller than that of EXP (4). We specified the absent pattern, which was related to the activation of lower limb extensors at the termination of the scoop phase. This might lead to insufficient ankle plantarflexion torque or backward ground reaction forces for pulling the barbell. A practical implication is that a novice needs to pay attention to learning the appropriate activation timing of lower limb extensors for sufficient force exertion

    CAUSALITY IN THE FEEDBACK LOOP DURiNG BALANCING TASKS: INTERMITTENT CONTROL OF QUIET STANDING

    Get PDF
    The aim of this study was to investigate the relationship between the timing of intermittent muscle activity and joint fluctuation and between intermittent muscle activity and joint torque output. Eight healthy male participants stood quietly on the force platform for 120 sec, while we measured angular displacements and joint toque of the ankle, knee, and hip in the sagittal plane. Surface electromyography from six leg muscles of each leg was also recorded to determine phasic muscle activation and deactivation for each muscle by using two low-pass filters. We found that muscle activation and deactivation periods were in accordance with joint position and velocity and were associated with torque fluctuations in the anatomical action direction. These results succeeded in experimentally visualizing the causality of the feedback loop of the postural control mechanism

    Novel Insights into Biarticular Muscle Actions Gained from High-Density Electromyogram

    Get PDF
    Biarticular muscles have traditionally been considered to exhibit homogeneous neuromuscular activation. The regional activation of biarticular muscles, as revealed from high-density surface electromyograms, seems however to discredit this notion. We thus hypothesize the regional activation of biarticular muscles may contribute to different actions about the joints they span. We then discuss the mechanistic basis and methodological implications underpinning our hypothesis

    Novel insights into bi-articular muscle actions gained from high-density EMG

    Get PDF
    Biarticular muscles have traditionally been considered to exhibit homogeneous neuromuscular activation. The regional activation of biarticular muscles, as revealed from high-density surface electromyograms, seems however to discredit this notion. We thus hypothesize the regional activation of biarticular muscles may contribute to different actions about the joints they span. We then discuss the mechanistic basis and methodological implications underpinning our hypothesis

    Lower Local Dynamic Stability and Invariable Orbital Stability in the Activation of Muscle Synergies in Response to Accelerated Walking Speeds

    Get PDF
    In order to achieve flexible and smooth walking, we must accomplish subtasks (e. g., loading response, forward propulsion or swing initiation) within a gait cycle. To evaluate subtasks within a gait cycle, the analysis of muscle synergies may be effective. In the case of walking, extracted sets of muscle synergies characterize muscle patterns that relate to the subtasks within a gait cycle. Although previous studies have reported that the muscle synergies of individuals with disorders reflect impairments, a way to investigate the instability in the activations of muscle synergies themselves has not been proposed. Thus, we investigated the local dynamic stability and orbital stability of activations of muscle synergies across various walking speeds using maximum Lyapunov exponents and maximum Floquet multipliers. We revealed that the local dynamic stability in the activations decreased with accelerated walking speeds. Contrary to the local dynamic stability, the orbital stability of the activations was almost constant across walking speeds. In addition, the increasing rates of maximum Lyapunov exponents were different among the muscle synergies. Therefore, the local dynamic stability in the activations might depend on the requirement of motor output related to the subtasks within a gait cycle. We concluded that the local dynamic stability in the activation of muscle synergies decrease as walking speed accelerates. On the other hand, the orbital stability is sustained across broad walking speeds

    Effect of Resistance Training and Fish Protein Intake on Motor Unit Firing Pattern and Motor Function of Elderly

    Get PDF
    We investigated the effect of resistance training and fish protein intake on the motor unit firing pattern and motor function in elderly. Fifty healthy elderly males and females (69.2 ± 4.7 years) underwent 6 weeks of intervention. We applied the leg-press exercise as resistance training and fish protein including Alaska pollack protein (APP) as nutritional supplementation. Subjects were divided into four groups: fish protein intake without resistance training (APP-CN, n = 13), placebo intake without resistance training (PLA-CN, n = 12), fish protein intake with resistance training (APP-RT, n = 12), and placebo intake with resistance training (PLA-RT, n = 13). Motor unit firing rates were calculated from multi-channel surface electromyography by the Convolution Kernel. For the chair-stand test, while significant increases were observed at 6 weeks compared with 0 week in all groups (p < 0.05), significant increases from 0 to 3 weeks and 6 weeks were observed in APP-RT (18.2 ± 1.9 at 0 week to 19.8 ± 2.2 at 3 weeks and 21.2 ± 1.9 at 6 weeks) (p < 0.05). Increase and/or decrease in the motor unit firing rate were mainly noted within motor units with a low-recruitment threshold in APP-RT and PLA-RT at 3 and 6 weeks (12.3 pps at 0 week to 13.6 pps at 3 weeks and 12.1 pps at 6 weeks for APP-RT and 12.9 pps at 0 week to 13.9 pps at 3 weeks and 14.1 pps at 6 weeks for PLA-RT at 50% of MVC) (p < 0.05), but not in APP-CN or PLA-CN (p > 0.05). Time courses of changes in the results of the chair-stand test and motor unit firing rate were different between APP-RT and PLA-RT. These findings suggest that, in the elderly, the effect of resistance training on the motor unit firing rate is observed in motor units with a low-recruitment threshold, and additional fish protein intake modifies these adaptations in motor unit firing patterns and the motor function following resistance training

    IL-33 delivery induces serous cavity macrophage proliferation independent of interleukin-4 receptor alpha

    Get PDF
    IL-33 plays an important role in the initiation of type-2 immune responses, as well as the enhancement of type 2 effector functions. Engagement of the IL-33 receptor on macrophages facilitates polarization to an alternative activation state by amplifying IL-4 and IL-13 signaling to IL-4Rα. IL-4 and IL-13 also induce macrophage proliferation but IL-33 involvement in this process has not been rigorously evaluated. As expected, in vivo delivery of IL-33 induced IL-4Rα-dependent alternative macrophage activation in the serous cavities. IL-33 delivery also induced macrophages to proliferate but, unexpectedly, this was independent of IL-4Rα signaling. In a filarial nematode infection model in which IL-4Rα-dependent alternative activation and proliferation in the pleural cavity is well described, IL-33R was essential for alternative activation but not macrophage proliferation. Similarly, during Alternaria alternata induced airway inflammation, which provokes strong IL-33 responses, we observed that both IL-4Rα and IL-33R were required for alternative activation, while macrophage proliferation in the pleural cavity was still evident in the absence of either receptor alone. Our data show that IL-33R and IL-4Rα promote macrophage proliferation independently of each other, but both are essential for induction of alternative activation

    Beneficial autoimmunity at body surfaces – immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer

    Get PDF
    Epithelial cells line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation or toxins cause activation of epithelial cells with release of cytokines and chemokines as well as alterations in the expression of cell surface ligands. Such display of epithelial stress is rapidly sensed by tissue resident immunocytes, which can directly interact with self-moieties on epithelial cells and initiate both local and systemic immune responses. Epithelial cells are thus key drivers of immune surveillance at body surface tissues. However, epithelial cells have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis
    corecore