438 research outputs found

    Consent Judgement in Environmental Lawsuits: More Than You Thought

    Get PDF

    Endonuclease heteroduplex mismatch cleavage for detecting mutation genetic variation of trypsin inhibitors in soybean

    Get PDF
    The objective of this work was to evaluate the genetic variation of trypsin inhibitor in cultivated (Glycine max L.) and wild (Glycine sofa Siebold & Zucc.) soybean varieties. Genetic variations of the Kunitz trypsin inhibitor, represented by a 21-kD protein (KTI), and of the Bowman-Birk trypsin chymotrypsin inhibitor (BBI) were evaluated in cultivated (G. max) and wild (G. sofa) soybean varieties. Endonuclease heteroduplex mismatch cleavage assays were performed to detect mutations in the KTI gene, with a single-stranded specific nuclease obtained from celery extracts (CEL I). The investigated soybean varieties showed low level of genetic variation in KTI and BBI. PCR-RFLP analysis divided the BBI-A type into subtypes A1 and A2, and showed that Tib type of KTI is the dominant type. Digestion with restriction enzymes was not able to detect differences between ti-null and other types of Ti alleles, while the endonuclease heteroduplex mismatch cleavage assay with CEL I could detect ti-null type. The digestion method with CEL I provides a simple and useful genetic tool for SNP analysis. The presented method can be used as a tool for fast and useful screening of desired genotypes in future breeding programs of soybean

    Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis

    Get PDF
    Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo and endosperm to repress seed size

    Genetics and Plant Development

    Get PDF
    There are only three grand theories in biology: the theory of the cell, the theory of the gene, and the theory of evolution. Two of these, the cell and gene theories, originated in the study of plants, with the third resulting in part from botanical considerations as well. Mendel's elucidation of the rules of inheritance was a result of his experiments on peas. The rediscovery of Mendel's work in 1900 was by the botanists de Vries, Correns, and Tschermak. It was only in subsequent years that animals were also shown to have segregation of genetic elements in the exact same manner as had been shown in plants. The story of developmental biology is different – while the development of plants has long been studied, the experimental and genetic approaches to developmental mechanism were developed via experiments on animals, and the importance of genes in development (e.g., Waddington, 1940) and their use for understanding developmental mechanisms came to botanical science much later – as late as the 1980s

    Combinatorial Signal Integration by APETALA2/Ethylene Response Factor (ERF)-Transcription Factors and the Involvement of AP2-2 in Starvation Response

    Get PDF
    Transcription factors of the APETALA 2/Ethylene Response Factor (AP2/ERF)- family have been implicated in diverse processes during development, stress acclimation and retrograde signaling. Fifty-three leaf-expressed AP2/ERFs were screened for their transcriptional response to abscisic acid (ABA), 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), methylviologen (MV), sucrose and high or low light, respectively, and revealed high reactivity to these effectors. Six of them (AP2-2, ARF14, CEJ1, ERF8, ERF11, RAP2.5) were selected for combinatorial response analysis to ABA, DCMU and high light. Additive, synergistic and antagonistic effects demonstrated that these transcription factors are components of multiple signaling pathways. AP2-2 (At1g79700) was subjected to an in depth study. AP2-2 transcripts were high under conditions linked to limited carbohydrate availability and stress and down-regulated in extended light phase, high light or in the presence of sugar. ap2-2 knock out plants had unchanged metabolite profiles and transcript levels of co-expressed genes in extended darkness. However, ap2-2 revealed more efficient germination and faster early growth under high sugar, osmotic or salinity stress, but the difference was abolished in the absence of sugar or during subsequent growth. It is suggested that AP2-2 is involved in mediating starvation-related and hormonal signals

    Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration

    Full text link
    [ES] Significance Statement Seed tolerance to deterioration depends on anti-aging defenses only partially understood. COG1 encodes a transcription factor previously described to attenuate phytochrome responses to light and we found that it is a positive regulator of seed tolerance to deterioration while light perception by phytochromes is negative. The proposed mechanism is that COG1 increases gibberellins levels, leading to a seed coat containing more suberin and less permeable to oxygen. Light is known to inhibit gibberellins action.This work was supported by grant BIO2014-52621-R from the Spanish 'Ministerio de Economia y Competitividad', Madrid. We thank the 'Servicio de Cuantificacion de Hormonas Vegetales' of our institute for the determination of GA, ABA and auxin.Bueso RĂłdenas, E.; Muñoz Bertomeu, J.; Campos, F.; MartĂ­nez-Ortuño, CJ.; Tello Lacal, C.; MartĂ­nez-Almonacid, I.; Ballester Fuentes, P.... (2016). Arabidopsis COGWHEEL1 links light perception and gibberellins with seed tolerance to deterioration. The Plant Journal. 87(6):583-596. https://doi.org/10.1111/tpj.13220S583596876Albert, S., Delseny, M., & Devic, M. (1997). BANYULS, a novel negative regulator of flavonoid biosynthesis in the Arabidopsis seed coat. The Plant Journal, 11(2), 289-299. doi:10.1046/j.1365-313x.1997.11020289.xAlejandro, S., RodrĂ­guez, P. L., BellĂ©s, J. M., Yenush, L., GarcĂ­a-Sanchez, M. J., FernĂĄndez, J. A., & Serrano, R. (2007). An Arabidopsis quiescin-sulfhydryl oxidase regulates cation homeostasis at the root symplast–xylem interface. The EMBO Journal, 26(13), 3203-3215. doi:10.1038/sj.emboj.7601757Arsovski, A. A., Haughn, G. W., & Western, T. L. (2010). Seed coat mucilage cells ofArabidopsis thalianaas a model for plant cell wall research. Plant Signaling & Behavior, 5(7), 796-801. doi:10.4161/psb.5.7.11773Bailly, C. (2004). Active oxygen species and antioxidants in seed biology. Seed Science Research, 14(2), 93-107. doi:10.1079/ssr2004159Beisson, F., Li, Y., Bonaventure, G., Pollard, M., & Ohlrogge, J. B. (2007). The Acyltransferase GPAT5 Is Required for the Synthesis of Suberin in Seed Coat and Root of Arabidopsis. The Plant Cell, 19(1), 351-368. doi:10.1105/tpc.106.048033Bernard, V., Lecharny, A., & Brunaud, V. (2010). Improved detection of motifs with preferential location in promoters. Genome, 53(9), 739-752. doi:10.1139/g10-042Berridge, M. V., Herst, P. M., & Tan, A. S. (2005). Tetrazolium dyes as tools in cell biology: New insights into their cellular reduction. Biotechnology Annual Review, 127-152. doi:10.1016/s1387-2656(05)11004-7BRAYBROOK, S., & HARADA, J. (2008). LECs go crazy in embryo development. Trends in Plant Science, 13(12), 624-630. doi:10.1016/j.tplants.2008.09.008Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., 
 Vingron, M. (2001). Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nature Genetics, 29(4), 365-371. doi:10.1038/ng1201-365Brundrett, M. C., Kendrick, B., & Peterson, C. A. (1991). Efficient Lipid Staining in Plant Material with Sudan Red 7B or Fluoral Yellow 088 in Polyethylene Glycol-Glycerol. Biotechnic & Histochemistry, 66(3), 111-116. doi:10.3109/10520299109110562Bueso, E., Muñoz-Bertomeu, J., Campos, F., Brunaud, V., MartĂ­nez, L., Sayas, E., 
 Serrano, R. (2013). ARABIDOPSIS THALIANA HOMEOBOX25 Uncovers a Role for Gibberellins in Seed Longevity. Plant Physiology, 164(2), 999-1010. doi:10.1104/pp.113.232223Bueso, E., Ibañez, C., Sayas, E., Muñoz-Bertomeu, J., Gonzalez-GuzmĂĄn, M., Rodriguez, P. L., & Serrano, R. (2014). A forward genetic approach in Arabidopsis thaliana identifies a RING-type ubiquitin ligase as a novel determinant of seed longevity. Plant Science, 215-216, 110-116. doi:10.1016/j.plantsci.2013.11.004Chandler, J. W., Abrams, S. R., & Bartels, D. (1997). The effect of ABA analogs on callus viability and gene expression in Craterostigma plantagineum. Physiologia Plantarum, 99(3), 465-469. doi:10.1034/j.1399-3054.1997.990315.xChĂątelain, E., Satour, P., Laugier, E., Ly Vu, B., Payet, N., Rey, P., & Montrichard, F. (2013). Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity. Proceedings of the National Academy of Sciences, 110(9), 3633-3638. doi:10.1073/pnas.1220589110Chen, H., Chu, P., Zhou, Y., Li, Y., Liu, J., Ding, Y., 
 Huang, S. (2012). Overexpression of AtOGG1, a DNA glycosylase/AP lyase, enhances seed longevity and abiotic stress tolerance in Arabidopsis. Journal of Experimental Botany, 63(11), 4107-4121. doi:10.1093/jxb/ers093Clerkx, E. J. M., Blankestijn-De Vries, H., Ruys, G. J., Groot, S. P. C., & Koornneef, M. (2004). Genetic differences in seed longevity of various Arabidopsis mutants. Physiologia Plantarum, 121(3), 448-461. doi:10.1111/j.0031-9317.2004.00339.xCurtis, M. D., & Grossniklaus, U. (2003). A Gateway Cloning Vector Set for High-Throughput Functional Analysis of Genes in Planta. Plant Physiology, 133(2), 462-469. doi:10.1104/pp.103.027979De Simone, O., Haase, K., MĂŒller, E., Junk, W. J., Hartmann, K., Schreiber, L., & Schmidt, W. (2003). Apoplasmic Barriers and Oxygen Transport Properties of Hypodermal Cell Walls in Roots from Four Amazonian Tree Species. Plant Physiology, 132(1), 206-217. doi:10.1104/pp.102.014902Debeaujon, I., LĂ©on-Kloosterziel, K. M., & Koornneef, M. (2000). Influence of the Testa on Seed Dormancy, Germination, and Longevity in Arabidopsis. Plant Physiology, 122(2), 403-414. doi:10.1104/pp.122.2.403Domergue, F., Vishwanath, S. J., JoubĂšs, J., Ono, J., Lee, J. A., Bourdon, M., 
 Rowland, O. (2010). Three Arabidopsis Fatty Acyl-Coenzyme A Reductases, FAR1, FAR4, and FAR5, Generate Primary Fatty Alcohols Associated with Suberin Deposition. Plant Physiology, 153(4), 1539-1554. doi:10.1104/pp.110.158238Espley, R. V., Brendolise, C., ChagnĂ©, D., Kutty-Amma, S., Green, S., Volz, R., 
 Allan, A. C. (2009). Multiple Repeats of a Promoter Segment Causes Transcription Factor Autoregulation in Red Apples. The Plant Cell, 21(1), 168-183. doi:10.1105/tpc.108.059329Farrant, J. M., & Moore, J. P. (2011). Programming desiccation-tolerance: from plants to seeds to resurrection plants. Current Opinion in Plant Biology, 14(3), 340-345. doi:10.1016/j.pbi.2011.03.018Fornara, F., Panigrahi, K. C. S., Gissot, L., Sauerbrunn, N., RĂŒhl, M., Jarillo, J. A., & Coupland, G. (2009). Arabidopsis DOF Transcription Factors Act Redundantly to Reduce CONSTANS Expression and Are Essential for a Photoperiodic Flowering Response. Developmental Cell, 17(1), 75-86. doi:10.1016/j.devcel.2009.06.015Gutierrez, L., Van Wuytswinkel, O., Castelain, M., & Bellini, C. (2007). Combined networks regulating seed maturation. Trends in Plant Science, 12(7), 294-300. doi:10.1016/j.tplants.2007.06.003Hajdu, A., ÁdĂĄm, É., Sheerin, D. J., Dobos, O., Bernula, P., Hiltbrunner, A., 
 Nagy, F. (2015). High-level expression and phosphorylation of phytochrome B modulates flowering time in Arabidopsis. The Plant Journal, 83(5), 794-805. doi:10.1111/tpj.12926Haughn, G., & Chaudhury, A. (2005). Genetic analysis of seed coat development in Arabidopsis. Trends in Plant Science, 10(10), 472-477. doi:10.1016/j.tplants.2005.08.005He, H., de Souza Vidigal, D., Snoek, L. B., Schnabel, S., Nijveen, H., Hilhorst, H., & Bentsink, L. (2014). Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. Journal of Experimental Botany, 65(22), 6603-6615. doi:10.1093/jxb/eru378Hedden, P., & Thomas, S. G. (2012). Gibberellin biosynthesis and its regulation. Biochemical Journal, 444(1), 11-25. doi:10.1042/bj20120245Hellens, R., Allan, A., Friel, E., Bolitho, K., Grafton, K., Templeton, M., 
 Laing, W. (2005). Plant Methods, 1(1), 13. doi:10.1186/1746-4811-1-13Hoekstra, F. A., Golovina, E. A., & Buitink, J. (2001). Mechanisms of plant desiccation tolerance. Trends in Plant Science, 6(9), 431-438. doi:10.1016/s1360-1385(01)02052-0Holdsworth, M., Kurup, S., & MKibbin, R. (1999). Molecular and genetic mechanisms regulating the transition from embryo development to germination. Trends in Plant Science, 4(7), 275-280. doi:10.1016/s1360-1385(99)01429-6Hu, J., Mitchum, M. G., Barnaby, N., Ayele, B. T., Ogawa, M., Nam, E., 
 Sun, T. (2008). Potential Sites of Bioactive Gibberellin Production during Reproductive Growth in Arabidopsis. The Plant Cell, 20(2), 320-336. doi:10.1105/tpc.107.057752Hudson, M. E., & Quail, P. H. (2003). Identification of Promoter Motifs Involved in the Network of Phytochrome A-Regulated Gene Expression by Combined Analysis of Genomic Sequence and Microarray Data. Plant Physiology, 133(4), 1605-1616. doi:10.1104/pp.103.030437Jofuku, K. D., den Boer, B. G., Van Montagu, M., & Okamuro, J. K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. The Plant Cell, 6(9), 1211-1225. doi:10.1105/tpc.6.9.1211Kim, Y.-C., Nakajima, M., Nakayama, A., & Yamaguchi, I. (2005). Contribution of Gibberellins to the Formation of Arabidopsis Seed Coat Through Starch Degradation. Plant and Cell Physiology, 46(8), 1317-1325. doi:10.1093/pcp/pci141Kotak, S., Vierling, E., BĂ€umlein, H., & Koskull-Döring, P. von. (2007). A Novel Transcriptional Cascade Regulating Expression of Heat Stress Proteins during Seed Development of Arabidopsis. The Plant Cell, 19(1), 182-195. doi:10.1105/tpc.106.048165Le, B. H., Cheng, C., Bui, A. Q., Wagmaister, J. A., Henry, K. F., Pelletier, J., 
 Goldberg, R. B. (2010). Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proceedings of the National Academy of Sciences, 107(18), 8063-8070. doi:10.1073/pnas.1003530107Leivar, P., & Quail, P. H. (2011). PIFs: pivotal components in a cellular signaling hub. Trends in Plant Science, 16(1), 19-28. doi:10.1016/j.tplants.2010.08.003Liu, L.-J., Zhang, Y.-C., Li, Q.-H., Sang, Y., Mao, J., Lian, H.-L., 
 Yang, H.-Q. (2008). COP1-Mediated Ubiquitination of CONSTANS Is Implicated in Cryptochrome Regulation of Flowering in Arabidopsis. The Plant Cell, 20(2), 292-306. doi:10.1105/tpc.107.057281De Lucas, M., & Prat, S. (2014). PIFs get BRright: PHYTOCHROME INTERACTING FACTORs as integrators of light and hormonal signals. New Phytologist, 202(4), 1126-1141. doi:10.1111/nph.12725Molina, I., Ohlrogge, J. B., & Pollard, M. (2007). Deposition and localization of lipid polyester in developing seeds of Brassica napus and Arabidopsis thaliana. The Plant Journal, 53(3), 437-449. doi:10.1111/j.1365-313x.2007.03348.xNesi, N., Debeaujon, I., Jond, C., Stewart, A. J., Jenkins, G. I., Caboche, M., & Lepiniec, L. (2002). The TRANSPARENT TESTA16 Locus Encodes the ARABIDOPSIS BSISTER MADS Domain Protein and Is Required for Proper Development and Pigmentation of the Seed Coat. The Plant Cell, 14(10), 2463-2479. doi:10.1105/tpc.004127OgĂ©, L., Bourdais, G., Bove, J., Collet, B., Godin, B., Granier, F., 
 Grappin, P. (2008). Protein Repair l-Isoaspartyl Methyltransferase1 Is Involved in Both Seed Longevity and Germination Vigor in Arabidopsis. The Plant Cell, 20(11), 3022-3037. doi:10.1105/tpc.108.058479Ó’MaoilĂ©idigh, D. S., Graciet, E., & Wellmer, F. (2013). Gene networks controllingArabidopsis thalianaflower development. New Phytologist, 201(1), 16-30. doi:10.1111/nph.12444Parcy, F., Valon, C., Kohara, A., MisĂ©ra, S., & Giraudat, J. (1997). The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. The Plant Cell, 9(8), 1265-1277. doi:10.1105/tpc.9.8.1265Park, D. H., Lim, P. O., Kim, J. S., Cho, D. S., Hong, S. H., & Nam, H. G. (2003). The Arabidopsis COG1 gene encodes a Dof domain transcription factor and negatively regulates phytochrome signaling. The Plant Journal, 34(2), 161-171. doi:10.1046/j.1365-313x.2003.01710.xPi, L., Aichinger, E., van der Graaff, E., Llavata-Peris, C. I., Weijers, D., Hennig, L., 
 Laux, T. (2015). Organizer-Derived WOX5 Signal Maintains Root Columella Stem Cells through Chromatin-Mediated Repression of CDF4 Expression. Developmental Cell, 33(5), 576-588. doi:10.1016/j.devcel.2015.04.024Pollard, M., Beisson, F., Li, Y., & Ohlrogge, J. B. (2008). Building lipid barriers: biosynthesis of cutin and suberin. Trends in Plant Science, 13(5), 236-246. doi:10.1016/j.tplants.2008.03.003Puig, J., Pauluzzi, G., Guiderdoni, E., & Gantet, P. (2012). Regulation of Shoot and Root Development through Mutual Signaling. Molecular Plant, 5(5), 974-983. doi:10.1093/mp/sss047Rajjou, L., & Debeaujon, I. (2008). Seed longevity: Survival and maintenance of high germination ability of dry seeds. Comptes Rendus Biologies, 331(10), 796-805. doi:10.1016/j.crvi.2008.07.021Riechmann, J. L., Heard, J., Martin, G., Reuber, L., -Z., C., Jiang, 
 -L. Yu, G. (2000). Arabidopsis Transcription Factors: Genome-Wide Comparative Analysis Among Eukaryotes. Science, 290(5499), 2105-2110. doi:10.1126/science.290.5499.2105Sano, N., Rajjou, L., North, H. M., Debeaujon, I., Marion-Poll, A., & Seo, M. (2015). Staying Alive: Molecular Aspects of Seed Longevity. Plant and Cell Physiology, 57(4), 660-674. doi:10.1093/pcp/pcv186Santos-Mendoza, M., Dubreucq, B., Baud, S., Parcy, F., Caboche, M., & Lepiniec, L. (2008). Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis. The Plant Journal, 54(4), 608-620. doi:10.1111/j.1365-313x.2008.03461.xSattler, S. E., Gilliland, L. U., Magallanes-Lundback, M., Pollard, M., & DellaPenna, D. (2004). Vitamin E Is Essential for Seed Longevity and for Preventing Lipid Peroxidation during Germination. The Plant Cell, 16(6), 1419-1432. doi:10.1105/tpc.021360Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly Specific Gene Silencing by Artificial MicroRNAs in Arabidopsis. The Plant Cell, 18(5), 1121-1133. doi:10.1105/tpc.105.039834Seo, M., Jikumaru, Y., & Kamiya, Y. (2011). Profiling of Hormones and Related Metabolites in Seed Dormancy and Germination Studies. Methods in Molecular Biology, 99-111. doi:10.1007/978-1-61779-231-1_7Shigeto, J., Kiyonaga, Y., Fujita, K., Kondo, R., & Tsutsumi, Y. (2013). Putative Cationic Cell-Wall-Bound Peroxidase Homologues in Arabidopsis, AtPrx2, AtPrx25, and AtPrx71, Are Involved in Lignification. Journal of Agricultural and Food Chemistry, 61(16), 3781-3788. doi:10.1021/jf400426gSparks, E., Wachsman, G., & Benfey, P. N. (2013). Spatiotemporal signalling in plant development. Nature Reviews Genetics, 14(9), 631-644. doi:10.1038/nrg3541Suzuki, M., & McCarty, D. R. (2008). Functional symmetry of the B3 network controlling seed development. Current Opinion in Plant Biology, 11(5), 548-553. doi:10.1016/j.pbi.2008.06.015Tan, Q. K.-G., & Irish, V. F. (2006). The Arabidopsis Zinc Finger-Homeodomain Genes Encode Proteins with Unique Biochemical Properties That Are Coordinately Expressed during Floral Development. Plant Physiology, 140(3), 1095-1108. doi:10.1104/pp.105.070565Ülker, B., & Somssich, I. E. (2004). WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7(5), 491-498. doi:10.1016/j.pbi.2004.07.012Wachsman, G., Sparks, E. E., & Benfey, P. N. (2015). Genes and networks regulating root anatomy and architecture. New Phytologist, 208(1), 26-38. doi:10.1111/nph.13469Weigel, D., Ahn, J. H., BlĂĄzquez, M. A., Borevitz, J. O., Christensen, S. K., Fankhauser, C., 
 Chory, J. (2000). Activation Tagging in Arabidopsis. Plant Physiology, 122(4), 1003-1014. doi:10.1104/pp.122.4.1003Western, T. L., Young, D. S., Dean, G. H., Tan, W. L., Samuels, A. L., & Haughn, G. W. (2003). MUCILAGE-MODIFIED4 Encodes a Putative Pectin Biosynthetic Enzyme Developmentally Regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis Seed Coat. Plant Physiology, 134(1), 296-306. doi:10.1104/pp.103.035519Xu, H., Wei, Y., Zhu, Y., Lian, L., Xie, H., Cai, Q., 
 Zhang, J. (2014). Antisense suppression ofLOX3gene expression in rice endosperm enhances seed longevity. Plant Biotechnology Journal, 13(4), 526-539. doi:10.1111/pbi.12277Yamaguchi-Shinozaki, K., & Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends in Plant Science, 10(2), 88-94. doi:10.1016/j.tplants.2004.12.012Yanagisawa, S. (2002). The Dof family of plant transcription factors. Trends in Plant Science, 7(12), 555-560. doi:10.1016/s1360-1385(02)02362-2Zhang, C., Mallery, E. L., Schlueter, J., Huang, S., Fan, Y., Brankle, S., 
 Szymanski, D. B. (2008). Arabidopsis SCARs Function Interchangeably to Meet Actin-Related Protein 2/3 Activation Thresholds during Morphogenesis. The Plant Cell, 20(4), 995-1011. doi:10.1105/tpc.107.05535

    Identification and characterization of seed-specific transcription factors regulating anthocyanin biosynthesis in black rice

    Get PDF
    Black rice is rich in anthocyanin and is expected to have more healthful dietary potential than white rice. We assessed expression of anthocyanin in black rice cultivars using a newly designed 135 K Oryza sativa microarray. A total of 12,673 genes exhibited greater than 2.0-fold up- or down-regulation in comparisons between three rice cultivars and three seed developmental stages. The 137 transcription factor genes found to be associated with production of anthocyanin pigment were classified into 10 groups. In addition, 17 unknown and hypothetical genes were identified from comparisons between the rice cultivars. Finally, 15 out of the 17 candidate genes were verified by RT-PCR analysis. Among the genes, nine were up-regulated and six exhibited down-regulation. These genes likely play either a regulatory role in anthocyanin biosynthesis or are related to anthocyanin metabolism during flavonoid biosynthesis. While these genes require further validation, the results here underline the potential use of the new microarray and provide valuable insight into anthocyanin pigment production in rice
    • 

    corecore