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Abstract. Winter CO2 fluxes represent an important com-
ponent of the annual carbon budget in northern ecosys-
tems. Understanding winter respiration processes and their
responses to climate change is also central to our abil-
ity to assess terrestrial carbon cycle and climate feedbacks
in the future. However, the factors influencing the spa-
tial and temporal patterns of winter ecosystem respiration
(Reco) of northern ecosystems are poorly understood. For
this reason, we analyzed eddy covariance flux data from 57
ecosystem sites ranging from∼35◦ N to ∼70◦ N. Decidu-
ous forests were characterized by the highest winterReco
rates (0.90± 0.39 g C m−2 d−1), when winter is defined as
the period during which daily air temperature remains below
0◦C. By contrast, arctic wetlands had the lowest winterReco
rates (0.02± 0.02 g C m−2 d−1). Mixed forests, evergreen
needle-leaved forests, grasslands, croplands and boreal wet-
lands were characterized by intermediate winterReco rates
(g C m−2 d−1) of 0.70(±0.33), 0.60(±0.38), 0.62(±0.43),
0.49(±0.22) and 0.27(±0.08), respectively. Our cross site
analysis showed that winter air (Tair) and soil (Tsoil) temper-
ature played a dominating role in determining the spatial pat-
terns of winterReco in both forest and managed ecosystems
(grasslands and croplands). Besides temperature, the sea-
sonal amplitude of the leaf area index (LAI), inferred from
satellite observation, or growing season gross primary pro-
ductivity, which we use here as a proxy for the amount of
recent carbon available forReco in the subsequent winter,
played a marginal role in winter CO2 emissions from forest
ecosystems. We found that winterReco sensitivity to tem-
perature variation across space (QS) was higher than the one
over time (interannual,QT ). This can be expected because
QS not only accounts for climate gradients across sites but
also for (positively correlated) the spatial variability of sub-
strate quantity. Thus, if the models estimate future warming
impacts onRecobased onQS rather thanQT , this could over-
estimate the impact of temperature changes.

1 Introduction

The processes controlling the winter carbon cycle of northern
ecosystems, which is mainly ecosystem respiration (Reco),
have received much less attention than processes active dur-
ing the growing season. The longstanding view of marginal
wintertime biological activity (e.g. Coyne and Kelley, 1971;
Steudler et al., 1989) proposes that winter respiration is
very small compared to growing season respiration. Recent
field studies suggest a different picture by demonstrating the
larger than expected wintertime respiration rates in Arctic
tundra, bog, and mountain ecosystems (e.g. Oechel et al.,
1997; Fahnestock et al., 1998; Grogan and Chapin, 1999;
Panikov and Dedysh, 2000; Aurela et al., 2002; Monson
et al., 2006; Bergeron et al., 2007). These studies suggest
that winterReco should not be ignored when attempting to

quantify and understand the annual carbon balance of terres-
trial ecosystems (Hobbie et al., 2000; Grogan and Jonasson,
2005; Johansson et al., 2006). However, due to the large car-
bon storage and heterogeneity of northern ecosystems, win-
ter Reco remains incompletely understood given the limited
spatial representativeness of individual-site studies.

In general, mid and high-latitude ecosystems contain large
amounts of soil carbon (Post et al., 1982; Tarnocai et al.,
2009), which implies that these ecosystems could provide a
significant positive feedback to climate change if warming
stimulates soil carbon decomposition and CO2 release to the
atmosphere (Friedlingstein et al., 2006). The increased high-
latitude warming projected by climate models includes win-
ter warming (Serreze et al., 2000; Giorgi et al., 2001) and
has already been observed over the past 30 yr (IPCC, 2007).
The response of the soil organic carbon (SOC) balance to
warming differs widely among coupled climate-carbon mod-
els (Friedlingstein et al., 2006). This is because the net bal-
ance in these models depends on two fluxes of opposite di-
rections: the litter input that may increase under warming
if vegetation net primary productivity increases, and the soil
carbon microbial decomposition rate that also responds posi-
tively to warming (e.g. Jones et al., 2005). Therefore, it is im-
portant to disentangle how temperature and vegetation pro-
ductivity separately affect winter respiration. Previous stud-
ies (e.g. Clein and Schimel, 1995; Hobbie, 1996; Mikan et
al., 2002; Grogan et al., 2001; Grogan and Jonasson, 2005)
were concentrated on the site-level or landscape-level. For
example, Grogan and Jonasson (2005) found that both the
amount of substrate available for respiration and soil tem-
perature (Tsoil) determine landscape-level variation of winter
Recoof birch forest and heath tundra. These studies are valu-
able for understanding site-specific or landscape-level pro-
cesses, but their results cannot be readily extrapolated across
sites and climate gradients to infer regional sensitivities.

Eddy covariance measurements of CO2 fluxes have been
collected continuously, together with climate variables, at
many sites in temperate, boreal and arctic ecosystems, and
are available in the FLUXNET database (Baldocchi et al.,
2001; Baldocchi, 2008). These data represent a valuable
source of information for the analysis of the spatial and tem-
poral variability of winterReco. In this study, we focus on
Northern Hemisphere sites from∼35◦ N to ∼70◦ N, cover-
ing a climate gradient of 24◦C of mean annual temperature.
In the first part, we investigate the importance of winterReco
and its contribution to annualReco for different ecosystem
types. The results are based on five different definitions of the
winter season, having different temporal and thermal thresh-
olds. In the second part, we analyze the temperature depen-
dency of winter dailyReco at each site, using an Arrhenius
type model. We also consider a total of 218 site-years that
have been aggregated to quantify the sensitivity of anomalies
of winter Reco to temperature on the temporal (interannual)
scale. This sensitivity to temperature variation over time is
hypothesized to be lower than the one across space given that
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the latter not only accounts for direct climate effects, but also
site productivity (Mahecha et al., 2010; Wang et al., 2010).
Finally, in an attempt to improve our understanding of spa-
tial controls on winterReco, we examine the relationships be-
tween winterReco, climate variables and productivity-related
variables across sites.

2 Materials and methods

2.1 Data sources

2.1.1 Eddy covariance flux data

The eddy covariance data used in this study are extracted
from the La Thuile FLUXNET synthesis database which
contains 965 site years processed according to standardized
protocols (Papale et al., 2006) (http://www.fluxdata.org).
The processing of this dataset is based on friction veloc-
ity (u∗) filter and despiking of half hourly flux data, which
would be expected to reduce the bias of flux measurements
during the calm night and winter stable stratification period.
Daily cumulative values of Net Ecosystem Exchange (NEE,
g C m−2 day−1) are retrieved from the half hourly values in-
cluded in the database, where a positive NEE represents a
carbon release and a negative NEE a carbon uptake. The
NEE time series can be partitioned into gross primary pro-
ductivity (GPP) and ecosystem respiration (Reco). The flux-
partitioning algorithm, which is implemented in La Thuile
FLUXNET database, uses short-term temperature sensitiv-
ities to extrapolate night-time respiration to daytime. This
approach avoids significantly biased estimates ofReco that
can be obtained using long-term temperature sensitivities af-
fected by confounding factors such as growth dynamics (Re-
ichstein et al., 2005).Tair, Tsoil and soil moisture in upper
layer (between 2 and 10 cm depth), precipitation, GPP and
ancillary observations of maximum LAI from site measure-
ments were also used in this study.

Of the 200 sites located north of 35◦ N, we identified a
subset of sites meeting the following criteria:

– having at least two years ofTair, upperTsoil, precipita-
tion, NEE, GPP andReco data;

– having a winter duration (according to definition
D AT0: Tair below 0◦C, Sect. 2.2) longer than 15 days;

– having more than 70 % of data coverage, both at the
annual scale and during the winter period defined by
D AT0.

This resulted in a total of 57 sites, and 218 site years of data
being selected, covering evergreen needleleaf forests (ENF),
deciduous broadleaf forests (DBF), mixed forests (MF), bo-
real wetlands (BWET), arctic wetlands (AWET), croplands
(CRO) and grasslands (GRA) (the number of site years are
78, 54, 17, 11, 5, 20 and 33, respectively) (Table 1).

Nearly one third (20) of the selected 57 sites employed
open-path infrared gas analyzers (IRGA) for measuring CO2
concentrations (Table 1), which are known to underestimate
CO2 emissions in cold conditions due to self-heating of the
open-path IRGAs (Burba et al., 2006; Hirata et al., 2007;
Lafleur and Humphreys, 2007). The effects of self-heating
can be corrected for in post-processing (Burba et al., 2008),
however while some studies found these corrections to im-
prove the correspondence with concurrent closed-path CO2
flux measurements (Burba et al., 2006, 2008; Grelle and
Burba, 2007; J̈arvi et al., 2009), others did not (Wohlfahrt
et al., 2008a; Haslwanter et al., 2009). The reasons for
these mixed results are unclear at present; they may be
partly attributed to differences in environmental conditions
(Haslwanter et al., 2009), partly to the deployment of the
open-path analyser. For example, the correction after Burba
et al. (2008) applies to a vertical setup only, while many
researchers prefer to tilt their open-path IRGAs in order to
speed up drying of the lower window after wetting. Given
these uncertainties, we decided not to correct open-path CO2
flux measurements for the effect of self-heating in the present
study. In an attempt to quantify how much this may bias
our results we compared the parameters of Eq. (1) opti-
mised for sites with open- and closed-path IRGAs separately.
Both parameters (E0,Recoref) were found to be not statisti-
cally significantly different (e.g.E0: open- vs. closed-path:
85.6 vs. 83.0 kJ mol−1; Recoref: open- vs. closed-path: 0.9
vs. 1.1 g C m−2 d−1 when investigatingTair-Reco relationship
based on winter definition DAT0), suggesting that any bias
due to the IRGA design is small in the present study.

2.1.2 LAI dataset

Information on the leaf area index (LAI) was retrieved
for each investigated site from MODIS-Aqua satellite data
downloaded from the ORNL-DAAC MODIS – Collection-
5 LAI data (MYD15A2) (https://daac.ornl.gov). These LAI
data, which are only available after the year 2000, have a
spatial resolution of 1 km and a temporal resolution of 8-
days. They also include quality control (QC) information
about cloud and data processing conditions. Only LAI data
without significant cloud contamination described in the LAI
user’s guide (http://landweb.nascom.nasa.gov) within an area
of 1×1 km centered on each site were retained for each 8-
day period to obtain the maximum and minimum LAI values
for each site year. The seasonal amplitude (1LAI) is de-
fined as the difference between maximum and minimum of
LAI and can be considered as a proxy for recent carbon in-
puts to soil, i.e. substrate available for sustaining winterReco.
In-situ1LAI can not be retrieved since the majority of mini-
mum LAI measurements are not reported in La Thuile ancil-
lary dataset. It should be noted that in-situ LAI substitution
with MODIS-LAI at 1 km resolution can introduce uncer-
tainty, whose magnitude is dependent on the size of the eddy
covariance tower footprint and the landscape heterogeneity
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Table 1. General characterization of study sites used in this study.

Site Type Lat. Lon. Index Ann. Ann. WLEN 1LAI Reco Reco Available Reference
Precip. Temp. (DAT0) (SD) (D AT0) (D TM) years

(SD) (SD) (SD)
(mm) (◦C) (d) (m2 m−2) (g C m−2 d−1) (g C m−2 d−1)

AT-Neu∗ GRA 47.1 11.3 1 852 6.5 116(16) 5.8(0.4) 1.24(0.12) 1.06(0.24) 2002–2005 Wohlfahrt et al. (2008b)
BE-Vie MF 50.3 6.0 2 1065 7.4 71(35) 5.4(0.2) 1.02(0.16) 1.10(0.16) 1996–2002 Aubinet et al. (2001)
CA-Ca1 ENF 49.9 −125.3 3 1369 9.9 54 5.6 1.33 1.48 2001 Humphreys et al. (2006)
CA-Ca2∗ ENF 49.9 −125.3 4 1474 9.9 39(31) 4.4(0.7) 0.82(0.13) 1.24(0.22) 2001, 2004 Humphreys et al. (2006)
CA-Let GRA 49.7 −112.9 5 398 5.4 138(13) 1.1(0.5) 0.22(0.08) 0.17(0.06) 1998–2004 Flanagan et al. (2002);

Flanagan and Johnson (2005)
CA-Mer BWET 45.4 −75.5 6 891 6.1 128(22) 5.5(0.3) 0.32(0.03) 0.29(0.04) 1998–2004 Lafleur et al. (2003)
CA-Oas DBF 53.6 −106.2 7 429 0.3 169(17) 6.0(0.2) 0.50(0.06) 0.33(0.07) 1997–2003 Black et al. (2000)
CA-Obs ENF 54.0 −105.1 8 406 0.8 185(15) 3.9(0.2) 0.47(0.04) 0.27(0.04) 1999–2004 –
CA-Ojp ENF 53.9 −104.7 9 431 0.1 176(13) 3.0(0.4) 0.24(0.02) 0.12(0.03) 1999–2004 Kljun et al. (2006)
CA-Qcu∗ ENF 49.3 −74.0 10 950 0.1 175(15) 2.2(0.2) 0.22(0.06) 0.13(0.01) 2001–2005 Giasson et al. (2006)
CA-Qfo ENF 49.7 −74.3 11 962 −0.4 172(19) 4.0(0.2) 0.44(0.07) 0.28(0.06) 2003–2005 Bergeron et al. (2007)
CA-SJ1∗ ENF 53.9 −104.7 12 430 0.1 181(15) 2.3(0.2) 0.14(0.05) 0.08(0.04) 2001–2004 –
CA-SJ2 ENF 53.9 −104.6 13 430 0.1 197 1.3(0.5) 0.09(0.00) 0.02(0.01) 2003–2004 –
CA-TP4∗ ENF 42.7 −80.4 14 936 8.7 107(8) 5.8(0.1) 0.66(0.06) 0.67(0.02) 2003–2004 Arain and Restrepo-Coupe (2005)
CA-WP1∗ MF 55.0 −112.5 15 461 1.1 159(7) 3.9(0.3) 0.22(0.02) 0.12(0.00) 2003–2004 Syed et al. (2006);

Flanagan and Syed (2011)
CH-Oe1∗ GRA 47.3 7.7 16 945 9.1 85(28) 2.4(0.4) 0.83(0.24) 0.87(0.24) 2002–2005 Ammann et al. (2007)
CN-HaM∗ GRA 37.4 101.2 17 577 −0.8 182 4.7 0.08 0.02 2002 Kato et al. (2006)
CZ-BK1 ENF 49.5 18.5 18 1026 4.7 112(19) 5.8(0.6) 0.54(0.07) 0.57(0.06) 2004–2005 –
DE-Bay ENF 50.1 11.9 19 1159 5.2 127(32) 1.22(0.21) 1.20(0.13) 1997–1998 –
DE-Geb∗ CRO 51.1 10.9 20 444 8.7 87(7) 5.7(0.6) 0.57(0.27) 0.59(0.28) 2004–2005 Kutsch et al. (2010b)
DE-Hai DBF 51.1 10.5 21 780 7.2 74(22) 6.2(0.3) 1.01(0.12) 1.06(0.15) 2001–2004 Knohl et al. (2003);

Kutsch et al. (2010a)
DE-Meh GRA 51.3 10.7 22 695 7.8 96(20) 5.1(0.7) 0.54(0.06) 0.57(0.09) 2003–2005 –
DE-Tha ENF 51.0 13.6 23 643 8.1 85(21) 5.7(0.5) 0.94(0.18) 1.00(0.10) 1996–2002 Grunwald and Bernhofer (2007)
DK-Sor DBF 55.5 11.6 24 573 8.0 71(35) 5.8(0.2) 1.44(0.25) 1.62(0.22) 1996–1998

2000–2001
Pilegaard et al. (2003)

FI-Hyy ENF 61.8 24.3 25 620 2.2 153(21) 5.9(0.6) 0.55(0.11) 0.47(0.14) 1996–1998,
2000–2002,

Suni et al. (2003b)

FI-Kaa BWET 69.1 27.3 26 454 −1.4 191(13) 1.5(0.1) 0.18(0.06) 0.15(0.06) 2000,
2003–2005

Aurela et al. (2002)

FI-Sod ENF 67.4 26.6 27 525 −1.1 183(14) 2.2(0.2) 0.42(0.09) 0.32(0.18) 2000–2001,
2003–2005

Suni et al. (2003a)

within the footprint. Besides this, the satellite product might
give large errors for evergreen needleleaf forests during the
winter season, for example, the in-situ LAI at RU-Fyo site
(spruce evergreen forest) was around 3.0 (m2 m−2) but the
MODIS-derived LAI value is almost near zero. When com-
paring maximum LAI, we found that the coefficient of de-
termination (r2) between satellite and in-situ measurements
was 0.48 (root mean square= 1.67,n = 52, data not shown).
Given the uncertainties in satellite-derived1LAI, mean daily
gross primary productivity during the growing season (May–
October) (GPPgs) at site level was also used as a proxy for
recent carbon inputs to the soil.

2.2 Winter season definition

In this study, we focus on carbon cycling during the freezing
period of the year, which has been rarely explored in previ-
ous meta-data analyses (e.g. Yuan et al., 2009; Migliavacca
et al., 2011). The winter seasons defined below are thus ref-
erenced to the freezing period of the year. Four winter season
definitions were tested to estimate the effect of this arbitrary
choice: DAT0, D AT-2, D AT-5 and DAT-10 are defined
as the period during which the 10-day smoothed dailyTair

remained below 0◦C, −2◦C, −5◦C and−10◦C for at least
five consecutive days, which allowed for year-to-year vari-
ability in winter length since these definitions are based on
each site year. We also include the established climatologi-
cal winter (DTM), which is defined as the three cold months
December, January and February, hence implying the same
winter onset and duration at each site.

2.3 Definitions of winter Reco ratios and winter Reco
temperature dependency

2.3.1 Winter Reco ratios definition

We investigated two types of winterReco ratios, one
(RWCR) is defined as the ratio of winter cumulativeReco
(g C m−2) to annual cumulativeReco (g C m−2) and the other
(RWRR) is calculated as the ratio of mean winterReco
rates (g C m−2 d−1) to mean annualRecorates (g C m−2 d−1).
Both of the ratios are expressed in percentage (%). RWRR is
used to represent winter average metabolism relative to the
annual level. Although RWCR only differs from RWRR by
the inclusion of winter duration, providing RWCR for each
ecosystem can indicate the role of winter season in the annual
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Table 1. Continued.

Site Type Lat. Lon. Index Ann. Ann. WLEN 1LAI Reco Reco Available Reference
Precip. Temp. (DAT0) (SD) (D AT0) (D TM) years

(SD) (SD) (SD)
(mm) (◦C) (d) (m2 m−2) (g C m−2 d−1) (g C m−2 d−1)

FR-Hes DBF 48.7 7.1 28 793 9.2 57(31) 5.8(0.5) 1.00(0.22) 1.17(0.24) 1997–1998,
2001–2003

Granier et al. (2000)

HU-Bug∗ GRA 46.7 19.6 29 555 10.5 92(3) 1.5(0.1) 0.42(0.14) 0.45(0.14) 2002–2005 –
IT-Amp∗ GRA 41.9 13.6 30 945 10.6 93(23) 2.0(0.2) 1.10(0.64) 0.97(0.24) 2002–2004 Gilmanov et al. (2007)
IT-Col DBF 41.8 13.6 31 971 7.3 83(53) 6.3(0.4) 0.72(0.00) 0.75(0.15) 1996, 2000 –
IT-MBo∗ GRA 46.0 11.0 32 1185 5.4 141(29) 5.8(0.4) 0.91(0.12) 0.84(0.20) 2003–2005 Marcolla and Cescatti (2005);

Gianelle et al. (2009)
IT-Ren ENF 46.6 11.4 33 965 6.2 150(19) 5.4(0.2) 0.38(0.07) 0.31(0.13) 2001–2005 Montagnani et al. (2009)
JP-Tak DBF 36.1 137.4 34 1024 6.5 123(16) 6.2(0.1) 0.58(0.17) 0.53(0.17) 2000–2003 –
JP-Tom∗ MF 42.7 141.5 35 1156 6.7 114(14) 6.0(0.3) 0.51(0.02) 0.46(0.05) 2001–2002 –
NL-Loo ENF 52.2 5.7 36 786 9.4 63(34) 5.7(0.5) 1.54(0.74) 2.06(0.43) 1996, 1998,

2002
Dolman et al. (2002)

RU-Fyo ENF 56.5 32.9 37 671 4.4 143(19) 5.9(0.4) 0.91(0.19) 0.78(0.27) 1998–2004 Milyukova et al. (2002)
US-Atq∗ AWET 70.5 −157.4 38 93 −12.3 254(14) 0.9(0.1) 0.02(0.01) 0.00(0.00) 2003–2005 –
US-Bkg∗ GRA 44.3 −96.8 39 586 6.0 124(5) 1.8(0.1) 0.15(0.07) 0.13(0.09) 2004–2005 Gilmanov et al. (2005)
US-Bo1∗ CRO 40.0 −88.3 40 991 11.0 96(18) 4.5(0.4) 0.22(0.07) 0.40(0.26) 1996–1998,

2001–2002
Meyers and Hollinger (2004)

US-Bo2∗ CRO 40.0 −88.3 41 991 11.0 84(14) 4.5(0.4) 0.50(0.50) 0.53(0.49) 2004–2005 Meyers and Hollinger (2004)
US-Ha1 DBF 42.5 −72.2 42 1071 6.6 110(16) – 1.43(0.44) 1.34(0.43) 1991–1992,

1994–1997
Urbanski et al. (2007)

US-Ho1 ENF 45.2 −68.7 43 1070 5.3 130(16) 5.5(0.2) 0.62(0.13) 0.52(0.13) 1996–2002 Hollinger et al. (2004)
US-IB2∗ GRA 41.8 −88.2 44 930 9.0 103(15) 1.7(0.3) 0.38(0.04) 0.37(0.13) 2004–2005 –
US-Ivo AWET 68.5 −155.8 45 304 −8.3 239(26) 2.0(0.1) 0.03(0.03) 0.03(0.02) 2003–2004 –
US-LPH DBF 42.5 −72.2 46 1071 6.7 119(11) 6.1(0.2) 0.81(0.19) 0.75(0.21) 2002–2004 Borken et al. (2006)
US-MMS∗ DBF 39.3 −86.4 47 1032 10.9 77(12) 5.9(0.1) 0.87(0.12) 0.91(0.18) 2000–2004 Schmid et al. (2000)
US-MOz∗ DBF 38.7 −92.2 48 878 13.5 64(26) 6.4(0.2) 0.76(0.38) 0.91(0.21) 2004–2005 Gu et al. (2006)
US-NR1 ENF 40.0 −105.5 49 595 0.4 169(41) 4.3(0.2) 0.77(0.19) 0.64(0.27) 1999, 2002 Monson et al. (2002)
US-Ne1 CRO 41.2 −96.5 50 790 10.1 92(10) 2.3(0.3) 0.61(0.03) 0.62(0.03) 2001–2004 Verma et al. (2005)
US-Ne2 CRO 41.2 −96.5 51 789 10.1 95(9) 2.1(0.2) 0.58(0.11) 0.59(0.12) 2002–2004 Verma et al. (2005)
US-Ne3 CRO 41.2 −96.4 52 784 10.1 94(8) 2.2(0.4) 0.59(0.10) 0.55(0.06) 2001–2004 Verma et al. (2005)
US-PFa MF 45.9 −90.3 53 823 4.3 141(1) 0.55(0.08) 0.53(0.12) 1996–1998 Ricciuto et al. (2008)
US-Syv MF 46.2 −89.3 54 826 3.8 148(20) 6.3(0.2) 0.52(0.32) 0.42(0.36) 2002,

2004–2005
Desai et al. (2005)

US-UMB DBF 45.6 −84.7 55 803 5.8 121(21) 6.4(0.2) 0.77(0.09) 0.77(0.05) 1999–2002 Gough et al. (2008)
US-WCr DBF 45.8 −90.1 56 787 4.0 140(17) 6.0(0.2) 0.58(0.19) 0.45(0.17) 1999–2002,

2004–2005
Cook et al. (2004)

US-Wrc ENF 45.8 −122.0 57 2452 9.5 70 5.7 1.08 0.82 2000 –

Type: DBF: deciduous broadleaf forests; ENF: evergreen needleleaf forests; GRA: grasslands; CRO: croplands; BWET and AWET are boreal and arctic wetlands, respectively;
MF (mixed forests).
∗ denotes the sites that use open-path gas analyzer.
Lat. and Lon. are latitude and longitude, respectively.
Annual precip. and Annual temp. represent annual total precipitation and mean annual temperature, respectively.
WLEN is the winter length (unit: day).
1LAI : the average difference between maximum and minimum of MODIS LAI (m2 m−2) from corresponding available years, and the MODIS LAI data is only available after
year 2000.
Reco is mean winterReco rates (g C m−2 d−1) for D AT0 (air temperature<0◦C) and DTM (December–February) over available years, respectively.
SD is standard deviation.

carbon budget. One-way variance analysis (ANOVA) was
employed to examine whether winterReco ratios (or win-
ter Reco) were different among ecosystem types. Before
ANOVA, the data sets were tested for normality using one-
sample Kolmogorov-Smirnov test (K-S test). Both of the sta-
tistical analyses were performed using SPSS statistical pack-
age (SPSS windows, version 17.0, SPSS Inc.).

2.3.2 Winter Reco sensitivity to temperature variation
over time

Owing to the short length ofReco and temperature records,
temporal correlations between winterReco and predictor
temperature are not applicable for studying the interannual
(temporal) sensitivity ofReco to temperature in detail at

each site. Instead, we calculated mean winterReco rates
(g C m−2 d−1) and mean winter temperature anomalies at
each site year, which was achieved by removing the multi-
year mean winterReco rates and mean winter temperature
from their respective mean annual values. A least squares
regression was then performed between all site-year anoma-
lies of mean winterReco rates and mean winter temperature
in order to quantify the response of winterReco to interan-
nual variations in temperature (orQT , winterRecosensitivity
to temperature variation over time; g C m−2 d−1 ◦C−1). For
each winter season definition and each vegetation type us-
ing winter definition DAT0, QT is calculated and its uncer-
tainty is estimated using a bootstrapping algorithm (random
resampling with replacement) with 500 draws.
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2.3.3 Arrhenius equation to describe the temperature
dependency ofReco

The temperature dependency of winterReco within- and
across-sites was analyzed using an Arrhenius type equation
(Lloyd and Taylor, 1994):

Reco= Recoref exp(
E0

R
(

1

Tref
−

1

T
)) (1)

whereRecoref (g C m−2 d−1) represents a reference respira-
tion rate at the reference temperature (Tref, 273.15 K) related
both to the amount of substrate available for decomposers,
and its quality (Lloyd and Taylor, 1994).E0 (kJ mol−1) is
the activation energy parameter and represents theReco sen-
sitivity to temperature,R the universal gas constant andT

is temperature (K). Model parameters (E0,Recoref) were esti-
mated using the Levenberg-Marquardt method, implemented
in the IDL library (Interactive Data Language 8.0), a non-
linear regression analysis that optimizes model parameters
finding the minimum of a defined cost function. The cost
function used here is the sum of squared residuals. The stan-
dard errors of model parameters (E0, Recoref) were estimated
using a bootstrapping algorithm (random resampling with re-
placement) with 500 draws.

In order to obtain site-year-specific parameters (E0,
Recoref), half-hourly nighttime NEE over the defined winter
season (Sect. 2.2) was regressed against the corresponding
nighttimeTair andTsoil based on Eq. (1). This is done given
that daytimeReco is derived from NEE based on the temper-
ature sensitivity of nighttime NEE in the La Thuile dataset
(Reichstein et al., 2005). It should be noted that other anal-
yses in this study are based on dailyReco values. The pa-
rameters (E0, Recoref) from the site years were then averaged
to get site-specific values based on the criterion that both the
relative error of site-year-specificE0 andRecoref is less than
50 % andE0 estimates were within an acceptable range (0–
450 kJ mol−1).

Across sites, we investigate two different temperature de-
pendencies of winterReco across space using Eq. (1). The
first one uses a fixed value ofRecoref across sites in Eq. (1).
The second one allowsRecoref to vary across sites, relying
on the assumption thatRecoref might have different values
for different substrates (Ågren, 2000). To achieve this, mean
winter temperature was regressed against mean winterReco
rates divided by site-specificRecoref, which is provided by
above-mentioned within-site analysis. This analysis is con-
ducted towards all winter definitions and all vegetation types
using winter definition DAT0.

Across sites, Eq. (1) was also reformulated by adding
the dependency ofRecoref on 1LAI (m2 m−2) or GPPgs
(g C m−2 d−1) in forest ecosystems. WinterReco rates
(g C m−2 d−1) can thus be expressed by:

Reco= (AairS +Bair)exp

[
E0 air

R

(
1

Tref
−

1

(Tair+Tref)

)]
(2)

Reco=(AsoilS+Bsoil)exp

[
E0 soil

R

(
1

Tref
−

1

(Tsoil+Tref)

)]
(3)

where S stands for substrate and represents either1LAI
(m2 m−2) or GPPgs (g C m−2 d−1). E0 air, E0 soil, Aair,
Asoil, Bair andBsoil are fitted parameters. To test the effect
of soil carbon stock, besides1LAI (or GPP gs), soil carbon
stock is also linearly added in the same way as1LAI (or
GPPgs) into Eqs. (2) and (3). The model accuracy was then
assessed by a cross-validation technique: one site at a time
was excluded using the remaining subset for training and the
excluded for validation and the model was fitted against the
training set and then applied to calculate the modeled value
for the validation set.

3 Results and discussion

3.1 Winter Reco and its ratio to annual Reco
among ecosystem types

Figure 1 shows the frequency distribution of winter cumu-
lative Reco and RWCR based on the two winter definitions
D AT0 and DTM. These histograms contain data from all
site-years. The winter cumulativeReco (g C m−2) for D TM
and DAT0 ranges from 0.5 to 201.5 (median, 25th and 75th
percentiles: 51.2, 24.1 and 78.0) and from 2.3 to 229.2 (64.8,
37.8 and 90.9), respectively. The RWCR (%) varies from
0.01 to 18.2 (5.3, 3.8 and 7.7) and from 0.7 to 22.5 (8.4, 5.9
and 10.4) for DTM and D AT0, respectively.

Table 2 provides the statistics of mean winterReco rates
and winter cumulativeReco for different ecosystem types us-
ing winter definition DAT0 and DTM. The values for other
winter definitions (DAT-2, D AT-5 and DAT-10) are shown
in Table A1 in the Appendix. As shown in Table 2, decid-
uous broadleaf forests have the highest winterReco and arc-
tic wetlands have the lowest. Both boreal and arctic wet-
lands have a smaller winterReco (mean rates and cumula-
tive) when using the definition DTM (90 days) compared to
definition D AT0 (151 and 248 days). This can be expected
due to the fact that microbial activity decreases rapidly as
Tsoil descends towards−5◦C (Clein and Schimel, 1995) and
arctic wetlands exhibit the lowestTsoil (e.g. DAT0: US-Ivo:
−4.9◦C and US-Atq:−11.3◦C). Besides the low tempera-
ture constraint, anaerobic conditions pose another constraint
on microbial respiration because of oxygen limitation. For
example, boreal wetlands with relatively highTsoil (CA-Mer:
−0.3◦C and FI-Kaa:−1.1◦C) has lower mean respiration
rate compared to other ecosystem types except arctic wet-
lands. Both mean winterReco rates and winter cumulative
Recoare expected to decrease when the winter definition was
changed from DAT-2 to D AT-10 (Table A1). Consistent
with D AT0 and DTM, the highest and lowest mean winter
Recorates (winter cumulativeReco) were always found in de-
ciduous broadleaf forests and arctic wetlands if using other
winter definitions (Table A1).
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Fig. 1. Frequency histograms of winter cumulative Reco and the ratio of winter cumulative Reco 933 
to annual cumulative Reco (RWCR) (%) according to winter definition D_TM 934 
(December-February) and D_AT0 (air temperature < 0 oC) across all of the site-years. n is the 935 
number of site years.  936 

Fig. 1. Frequency histograms of winter cumulativeReco and the ratio of winter cumulativeReco to annual cumulativeReco (RWCR) (%)
according to winter definition DTM (December–February) and DAT0 (air temperature<0◦C) across all of the site-years.n is the number
of site years.

The RWCR (%) varies among ecosystem types (Table 2).
Using definition DAT0, the highest RWCR values are found
in both arctic and boreal wetlands and the lowest values in
grasslands and croplands (Table 2). In contrast, when us-
ing the DTM definition with a much shorter winter dura-
tion in high latitudes, both arctic and boreal wetlands have
a lower RWCR (Table 2). Compared to the RWCR, the
RWRR (%) is less varied among different ecosystem types
but shows a higher relative value for ecosystems with large
permanent biomass such as forests, indicating the contribu-
tion of autotrophic respiration. Arctic wetlands have much
lower RWRR in DTM than D AT0, which can be related to
the possibility that the microbial activity is much more con-
strained by very low temperatures in DTM (Tsoil: −15.9◦C)
than DAT0 (Tsoil: −11.3◦C). Similar to the RWCR, both
croplands and grasslands have the relatively lower RWRR
values (Table 2), which may be related to management prac-
tices that remove the plant residuals fuelling winter respira-
tion.

Except winter definition DTM, the RWCR increases with
latitude (e.g. DAT0: r = 0.33,p < 0.05,n = 57) since win-
ter is often longer at higher-latitude sites (e.g. DAT0: r =

0.51,p < 0.01). This pattern can be also found if grasslands
and croplands are separated from forests (data not shown).
The increase of the RWCR with latitude is not found in
D TM due to its constant winter duration. These results im-

ply that winterReco in colder regions carries a higher rela-
tive contribution to annual cumulativeReco, due to its longer
duration, than at warmer sites and thus further stresses the
importance of winterReco for the carbon balance of alpine,
arctic and boreal ecosystems (e.g. Oechel et al., 1997; Fahne-
stock et al., 1998; Bergeron et al., 2007; Wohlfahrt et al.,
2008b). In this respect, we suggest that the established clima-
tological winter season (December through February) should
not be chosen to represent the role of winter time for an-
nual carbon balances of seasonally cold sites. Due to sparse
data for cold regions in global FLUXNET, the RWCR (4.9–
13.2 %) using DAT0 is on average lower in this study than in
previous works (15–50 %) by Zimov et al. (1996) and Fahne-
stock et al. (1998), focused on arctic ecosystems.

3.2 Temperature sensitivity of winterReco

3.2.1 Temperature sensitivity of winterReco at the
site level

Under the winter definition DAT0, across sites, values of the
reference respiration rateRecoref (g C m−2 d−1) and activa-
tion energyE0 (kJ mol−1) range from 0.17 to 1.74 and from
5.1 to 50.8, respectively, whenTair is used as the predictor,
and from 0.17 to 1.43 and from 26.5 to 192.6 whenTsoil is
used. Across sites,Recorefwas found to increase with1LAI

www.biogeosciences.net/8/2009/2011/ Biogeosciences, 8, 2009–2025, 2011
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Table 2. Summary statistics of mean winterReco rates (g C m−2 d−1), winter cumulativeReco (g C m−2). RWRR values (%) and RWCR
values (%) with winter definitions DAT0 (air temperature<0◦C) and DTM (December–February) across ecosystem types.

Vegetation type DAT0 D TM

Num Winter
Length

Winter
cumulative
Reco

RWCR Mean
Winter
Reco
rates

RWRR Num Winter
cumulative
Reco

RWCR Mean
Winter
Reco
rates

RWRR

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

Mean
(SD)

d (g C m−2) (%) (g C m−2 d−1) (%) (g C m−2) (%) (g C m−2 d−1) (%)

DBF 54 106ab(42) 89.0b(44.7) 8.9abc(4.0) 0.90c(0.39) 31.7b(11.6) 54 85.1c(42.7) 7.8b(3.1) 0.95c(0.47) 31.6b(12.7)
ENF 78 144ab(45) 76.3b(40.4) 9.9bc(3.9) 0.60bc(0.38) 26.0ab(8.4) 78 65.4bc(53.6) 6.2b(3.4) 0.73bc(0.60) 25.0b(13.9)
MF 17 113ab(44) 68.4b(33.4) 7.3ab(3.1) 0.70bc(0.33) 26.0ab(10.4) 17 67.5bc(35.8) 6.7b(3.3) 0.75bc(0.41) 27.1b(13.5)
GRA 33 114ab(29) 67.6b(50.1) 6.8ab(3.4) 0.62ab(0.43) 22.4ab(9.3) 33 50.0abc(34.7) 4.9ab(2.1) 0.56abc(0.39) 20.5b(8.5)
CRO 20 93a(12) 45.3ab(20.8) 4.9a(1.9) 0.49abc(0.22) 19.4ab(7.5) 20 46.1abc(19.7) 5.0ab(1.9) 0.51abc(0.22) 20.3ab(7.9)
BWET 11 151b(37) 38.6ab(11.5) 10.8bc(3.7) 0.27ab(0.08) 25.8a(4.3) 11 21.6ab(7.6) 5.7b(1.1) 0.24ab(0.08) 23.1b(4.7)
AWET 5 248c(18) 6.0a(4.4) 13.2c(6.4) 0.02a(0.02) 19.5a(9.4) 5 1.1a(1.6) 1.7a(1.7) 0.01a(0.02) 6.8a(7.1)

ENF, DBF, MF, GRA, CRO, BWET and AWET represent evergreen needle leaf forests, deciduous broadleaf forests, mixed forests, grasslands, croplands, boreal wetlands and arctic
wetlands, respectively.
RWCR and RWRR is the ratio of winter cumulativeReco (g C m−2) to annual cumulativeReco (g C m−2) and the ratio of mean winterReco rates (g C m−2 d−1) to mean annual
Reco rates (g C m−2 d−1), respectively.
SD is standard deviation. Mean (±1 SD) within a column followed by different letters (a, b and c) were significantly different (p < 0.05).
Data normality was tested using one-sample Kolmogorov-Smirnov (K-S test) without the Dallal-Wilkinson-Lilliefor correction and the distribution of the data pooled from all of the
site years is not significant from the normal distribution except winterReco rates in DTM (p = 0.013, n = 218). However, if K-S test with correction is used, the data in all of the
cases did not conform to the normal distribution. We should thus take cautions about the existence of the risk of violation of assumptions of ANOVA.
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(Fig. 2a) (or GPPgs, data not shown) both in the forests and
in grasslands and croplands. These results indicate that sub-
strate availability, for which1LAI and GPPgs are taken as
proxies, exerts a significant positive control onRecorefacross
sites, and thus supports the conclusions of Grogan and Jonas-
son (2005) who found thatRecorefwas significantly reduced
after removing plant and litter in a birch and heath tundra.
We also found thatRecoref is marginally correlated with total
soil carbon stock in forest ecosystems (Fig. 2b). We did not
perform the same analysis for grasslands and croplands due
to their limited number of samples (n = 5). Based on the for-
est ecosystems our results support previous studies (Grogan
et al., 2001; Nobrega and Grogan, 2007), which suggested
that winter soil respiration is more derived from easier de-
composable carbon (e.g. litter) than bulk soil organic matter

(SOC). This can be expected due to the fact that total soil
carbon stock reflects the fraction of slow and passive com-
pounds, which do not contribute much toReco. However,
SOC, which is buried beneath the active layer in frozen soils,
has found to be labile and could be respired in case of per-
mafrost thawing (Dutta et al., 2006; Nowinski et al., 2010).
The decomposition of this old but labile SOC is of concern
for future warming (on decadal scale), although this process
is masked by the faster C cycling of fresh litter (on seasonal
to interannual scale).

Our analysis shows that the arctic permafrost site US-
Atq has the lowestE0 in all winter definitions (e.g. DAT0:
26.5 kJ mol−1). This can be attributed to the fact that sub-
strate availability for microbial respiration (Ostroumov and
Siegert, 1996; Mikan et al., 2002) can be significantly
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Fig. 3. The winter Reco sensitivity to temperature variation across space and the one over time 950 
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Fig. 3. The winterRecosensitivity to temperature variation across space and the one over time is compared across different winter definitions
and vegetation types, using both air(a) and soil(b) temperature, and two different types of winterReco sensitivity to temperature variation
across space calculated from the Arrhenius function are also compared using both air(c) and soil(d) temperature. The values from vegetation
type are calculated according to winter definition DAT0.

reduced if the soil reaches a critical freezing temperature
(e.g. DAT0: US-Atq: −11.3◦C) in which microorganisms
can be in a state of anabiosis (e.g.−10◦C in Vorobyova et
al., 1997). In contrast, another arctic permafrost site (US-
Ivo) had a comparably high activation energy (e.g. DAT0:
66.3 kJ mol−1) presumably due to higherTsoil (e.g. DAT0:
−4.9◦C). Our understanding of winterReco controls in arc-
tic permafrost regions is still very poor since only two per-
mafrost sites are included in this study. This calls for further
studies of different permafrost (e.g. continuous, discontinu-
ous, and sporadic etc., Jorgenson et al., 2001; Zhang, 2005),
vegetation types (e.g. Eugster et al., 2005) and in particular
the different responses to freezing of oxic and anoxic systems
underlain by permafrost.

3.2.2 Winter Reco sensitivity to temperature variation
over time

Our analysis shows that winterRecoanomalies positively cor-
related with winterTsoil anomalies, which explained more
variability (e.g. DAT0: r = 0.40,p < 0.01,n = 218; D TM:
r = 0.37, p < 0.01, n = 218, data not shown) thanTair
(e.g. DAT0: r = 0.30, p < 0.01, n = 218; D TM: r = 0.22,
p < 0.01,n = 218, data not shown). This is also found when
using other winter definitions (data not shown). The ex-
plained variance by the temperature is very low, but this anal-

ysis might suggest thatTsoil was superior toTair in explain-
ing anomalies in winterReco likely because of the influence
of snow cover which acts as a thermal insulator controlling
soil microbial activity (Zhang, 2005). This is consistent with
the results of a six-year record of eddy covariance measure-
ments at the Niwot Ridge Ameriflux site in the Rocky Moun-
tains, where Monson et al. (2006) showed that interannual
variability of net carbon exchange is less controlled byTair
anomalies than byTsoil anomalies, which in turn were con-
trolled by snow depth. To verify this observation with our
dataset, daily snow water equivalent from AMSR-E/Aqua
(Kelly et al., 2004) was used but no significant relationship
between anomalies of snow water equivalent and winterReco
could be found (data not shown). This could be expected
since the snow characteristics at site level can not be truly
reflected by a remote sensing product at a spatial resolution
of 25× 25 km2. In addition, we found no significant rela-
tionship, withr always close to zero, between winterReco
and winter precipitation anomalies (e.g. DAT0: p = 0.49;
D TM: p = 0.71) and no correlation with1LAI anoma-
lies (e.g. DAT0: p = 0.44; D TM:p = 0.82) and GPPgs
(e.g. DAT0: p = 0.34; D TM: p = 0.69). This was also
found if forest ecosystems and managed ecosystems (grass-
lands and croplands) were considered separately (data not
shown).
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3.2.3 The comparison between winterRecosensitivity to
temperature variation across space and over time

Our analysis shows that the winterReco sensitivity to vari-
ation of Tair or Tsoil across space (QS ; g C m−2 d−1 ◦C−1),
defined as the slope of a linear regression between mean win-

ter Reco rates and mean winterTair or Tsoil across all sites is
higher thanQT (winter Reco sensitivity to temperature vari-
ation over time) among different winter definitions (Fig. 3a
and b). In addition, we categorized the sites by vegetation
types for the winter definition DAT0, and the difference be-
tween these two temperature sensitivities can also be found in
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all ecosystem types except boreal and arctic wetlands (Fig. 3a
and b). No difference for the wetland (boreal and arctic wet-
lands) category may be due to the low number of the samples
in wetland (n = 4). The same differences between the two
temperature sensitivities can also be obtained if sites are cat-
egorized by vegetation types according to other winter defi-
nitions (data not shown).

The differences between these two winterReco tempera-
ture sensitivities are due to the fact thatQT is mainly driven
by direct climate effects, butQS not only accounts for gra-
dients of climate affecting decomposition, but also reflects
gradients in ecosystem state (e.g. soil C pools) in space
(Hibbard et al., 2005) or the degree of adaptation of mi-
croorganisms to low temperatures. To test this hypothesis,
we regressed mean winterReco rates (g C m−2 d−1) divided
by site-specificRecoref provided by the within-site analysis
(Sect. 3.2.1) against mean winterTair or Tsoil using the Ar-
rhenius function. As shown in Fig. 3c and d, activation en-
ergies (E0, kJ mol−1) were much smaller when using site-
specificRecoref in all winter definitions and all vegetation
types based on winter definition DAT0. This is consistent
with the findings of recent studies (Mahecha et al., 2010;
Wang et al., 2010), which showed that the temperature sen-
sitivity (Q10) became much smaller after removing the in-
fluence of confounding effects imposed by substrate avail-
ability. Furthermore, from a multiple regression analysis
conducted between mean winterReco rates and both mean
winter temperature and1LAI (or GPP gs) across sites, we
found thatQS became smaller if1LAI (or GPP gs) was in-
cluded (data not shown). For example, for winter defined as
D AT0, QS (SD) calculated as a function ofTsoil changed
from 0.11(0.03) to 0.08(0.03) after1LAI was included as an
additional predictor. However, theQS after including1LAI
(D AT0: 0.08±0.03) remains larger than its corresponding
QT (D AT0: 0.05±0.01), which can be expected due to the
possibility that1LAI only partly accounts for inter-site vari-
ation in substrate availability (Sect. 3.2.1). This might imply
thatQS can become closer toQT if spatial gradients in sub-
strates can be mostly taken into account.

The temperature sensitivity of respiration is a key param-
eter controlling carbon-climate feedbacks in coupled mod-
els (Friedlingstein et al., 2006). A fixed value of tempera-
ture sensitivity, obtained from meta-analysis of spatial data
(Raich and Schlesinger, 1992; Lloyd and Taylor, 1994) is
often incorporated in these models (e.g. Cox et al., 2000;
Friedlingstein et al., 2006). IfQS rather thanQT is used
for winter Reco, then, the current generation of models will
likely overestimate the effect of future warming on soil C
pools. However, great care should be taken into this extrap-
olation when usingQT obtained from soil temperature. On
the one hand, in La Thuile dataset, the soil temperature mea-
surement depth is not uniform across sites (the range is from
2 to 10 cm). On the other hand, the active layer where winter
Reco occurs might be shallow and its depth might not neces-
sarily coincide with the one for which soil temperature was

provided in the dataset. These two factors might contribute
to the biased estimate of actual temperature response of win-
ter Reco (e.g. Reichstein and Beer, 2008; Subke and Bahn,
2010).

3.3 Environmental and biotical controls on winter Reco
across sites

Since grasslands and croplands are heavily affected by hu-
man management on a short-term (e.g. seasonal and annual)
basis, we conducted two separate cross site analyses, one for
forests and the other for both grasslands and croplands. Wet-
land sites were not included in the analysis since the number
of the samples suited for our winterReco study in La Thuile
dataset is too small (n = 4).

Under all winter definitions, winterReco is found to in-
crease exponentially with increasingTair andTsoil (Fig. 4a
and b) across sites. On the basis of the aforementioned re-
sults (Sect. 3.2.1), a linear dependence of the reference res-
piration on1LAI or GPP gs was included (Eqs. 2 and 3). We
only explored1LAI or GPP gs effects in the forest ecosys-
tems since1LAI or GPP gs may be weak indicators of re-
cent carbon inputs to the soil in grasslands and croplands
(Fig. 2a), where much of the produced carbon is exported
from the sites.

As shown in Fig. 4c and d, when integrated over five dif-
ferent winter definitions, the coefficients of determination for
Eqs. (2) and (3) range from 0.54 to 0.82 and from 0.51 to
0.81, while the root mean square errors are within the range
of 0.17–0.22 and 0.17–0.22 g C m−2 d−1, respectively (data
not shown). A cross validation of the regression models in
Eqs. (2) and (3) shows that 50–79 % and 48–76 % of win-
ter Reco variance can be explained by Eqs. (2) and (3). Both
equations empirically describe the spatial variability of win-
terRecoand thus have predictive power to extrapolate winter
Reco to the continental scale. Given that temperature is the
dominant controlling factor of winterReco across sites and
co-varies with other potential drivers, we regressed the resid-
uals of Eqs. (2) and (3) against the total precipitation during
winter period (winter precipitation) to determine if this alter-
native driver could explain additional variance. There was no
significant correlation between the residuals and winter pre-
cipitation using all winter definitions (e.g. DAT0: Eq. (2):
r = 0.00, p = 0.632; Eq. (3):r = 0.01, p = 0.901, data not
shown). The lack of a significant correlation between win-
ter precipitation and winterReco may be explained as fol-
lows. First, precipitation effects on respiration can be man-
ifested through its influences on soil moisture (e.g. Migli-
avacca et al., 2011). Since most of the sites in this study are
expected to be covered by snow thanks to a freezing or be-
low freezing temperature-threshold based winter definition,
precipitation is expected to influence soil moisture to a lesser
extent. For example, at site AT-Neu where upper soil mois-
ture data were available, soil moisture (%) is almost constant
(50.5±2.0) during the period from day 322 of year 2002 to
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day 108 of year 2003, which is within the range of winter
definition D AT0. In this respect, the role of winter precip-
itation in regulatingReco is not as evident as in the growing
season (e.g. Migliavacca et al., 2011). Second, winter snow-
fall (solid precipitation) is one of many variables controlling
snow depth, which was found to regulateTsoil and micro-
bial respiration under the snow pack when usingTair as a
predictor of winterReco (e.g. Groffman et al., 2001, Grogan
and Jonasson, 2006; Monson et al., 2006; Nobrega and Gro-
gan, 2007). Snow depth is not simply related to winter snow-
fall since it is influenced by local factors such as topography
(e.g. Liston, 2004), wind speed (e.g. Li and Pomeroy, 1997),
vegetation structure (e.g. Li and Pomeroy, 1997; Rutter et
al., 2009), sublimation and melting. This justifies neglect-
ing precipitation in our temperature response model (Eqs. 2
and 3).

Our results also showed that the inclusion of1LAI can
only make a marginal improvement in winterRecoprediction
of forest ecosystems (Fig. 4c and d), which was also observed
if both total soil carbon stock and1LAI or GPP gs was in-
cluded (data not shown). This may be related to the fact that
aboveground respiration from tree biomass can still accounts
for a significant fraction of winterReco (e.g. the reported val-
ues are below 10 % or even higher than 50 %, Monson et
al., 2005; Davidson and Janssens, 2006), thus reducing the
fraction of heterotrophic respiration on winterRecousing the
substrates such as litter. It would also suggest that both re-
cent aboveground carbon inputs (approximated by1LAI or
GPPgs) and soil carbon stock can not fully account for sub-
strate availability (Fig. 2a and b), and belowground carbon
inputs such as the senescence of fine roots and the supply
of dissolved organic carbon or nitrogen (e.g. Edwards et al.,
2006; Larsen et al., 2007) might play a role. Most notably,
the substrates for winter soil respiration can be provided by
the dead biomass of mycorrhizal fungi and other rhizospheric
microbial cells that die at the autumn-winter transition period
following the nighttime soil freezing.

4 Conclusions

The availability of meteorological and eddy covariance flux
data across different ecosystems opens a new opportunity to
quantify winterReco and its spatial and temporal controls
across North Hemisphere ecosystems. Given four different
winter definitions, based on temperature below the freezing
point, we found an increase in the ratio of winter to annual
cumulative respiration towards higher latitude, due to the
longer winters that occur at high latitudes. Therefore, due
to the importance of winter processes in the carbon balance,
it is important to better represent winterReco in current ter-
restrial carbon cycle models. The large number of sites now
available provides an important source of information to im-
prove winter carbon cycle. Our empirical characterization
of temperature controls on winterReco implies that winter

Reco temperature sensitivity obtained on spatial and temporal
scales should be treated differently. The winterReco sensi-
tivity to temperature variation across space (QS) was always
found to be higher than the one over time (QT ) among differ-
ent winter definitions and among different vegetation types
except for the wetlands which had a limited sample size. Our
result also imply thatQS can become closer to itsQT if spa-
tial gradients in inter-site substrates can be more and more
taken into account. Thus, if extrapolated to future warming,
the winterReco temperature sensitivity to warming obtained
from spatial gradients will be exaggerated without fully con-
sidering the spatial difference in substrate availability.

Temperature is an overwhelming factor in determining the
spatial variation of winterReco in forests and grasslands and
croplands. Although recent carbon inputs from aboveground
marginally account for winterReco spatial variation, inter-
site substrate availability (or biotic factors) does seem to be
important since1LAI or GPP gs do partly account for the
difference in reference respiration across sites. Indeed, the
biotic controls of winterReco were not fully explored in this
study, which needs further investigation by considering be-
lowground carbon inputs such as recently-killed rhizospheric
microbial biomass and the senescence of fine roots. It should
be noted that our results are mainly based on forest ecosys-
tems and that winter carbon cycling in arctic ecosystems with
limited sample size in La Thuile dataset characterized by
long winters and large soil carbon pools are still not well un-
derstood. Furthermore, snow cover effects on winterReco
were only explored using satellite-derived snow products,
and these should be further investigated in future studies in
which more in-situ snow data are available.
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Appendix A

Table A1. WinterReco rates (g C m−2 d−1) comparison among different winter definitions.

Site Type Lat. Lon. DTM D AT0 D AT-2 D AT-5 D AT-10

Reco WLEN Reco WLEN Reco WLEN Reco WLEN Reco
(SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD) (SD)
(g C m−2 d−1) (d) (g C m−2 d−1) (d) (g C m−2 d−1) (d) (g C m−2 d−1) (d) (g C m−2 d−1)

AT-Neu GRA 47.1 11.3 1.06(0.24) 116(16) 1.24(0.12) 92(32) 1.04(0.34) 62(22) 1.04(0.43) – –
BE-Vie MF 50.3 6.0 1.10(0.16) 71(35) 1.02(0.16) 57(28) 0.89(0.15) 17 0.43 – –
CA-Ca1 ENF 49.9 –125.3 1.48 54 1.33 – – – – – –
CA-Ca2 ENF 49.9 –125.3 1.24(0.22) 39(31) 0.82(0.13) – – – – – –
CA-Let GRA 49.7 –112.9 0.17(0.06) 138(13) 0.22(0.08) 120(21) 0.21(0.07) 100(32) 0.19(0.10) 61(37) 0.14(0.07)
CA-Mer BWET 45.4 –75.5 0.29(0.04) 128(22) 0.32(0.03) 112(22) 0.30(0.04) 93(14) 0.28(0.04) 57(22) 0.24(0.03)
CA-Oas DBF 53.6 –106.2 0.33(0.07) 169(17) 0.50(0.06) 157(21) 0.46(0.08) 141(13) 0.40(0.10) 101(18) 0.34(0.07)
CA-Obs ENF 54.0 –105.1 0.27(0.04) 185(15) 0.47(0.04) 168(18) 0.42(0.04) 145(15) 0.35(0.06) 114(13) 0.30(0.03)
CA-Ojp ENF 53.9 –104.7 0.12(0.03) 176(13) 0.24(0.02) 164(18) 0.21(0.04) 145(14) 0.17(0.05) 116(13) 0.14(0.03)
CA-Qcu ENF 49.3 –74.0 0.13(0.01) 175(15) 0.22(0.06) 154(14) 0.19(0.04) 137(21) 0.17(0.05) 104(16) 0.12(0.01)
CA-Qfo ENF 49.7 –74.3 0.28(0.06) 172(19) 0.44(0.07) 149(14) 0.39(0.07) 139(13) 0.37(0.05) 102(10) 0.30(0.04)
CA-SJ1 ENF 53.9 –104.7 0.08(0.04) 181(15) 0.14(0.05) 172(19) 0.13(0.04) 146(20) 0.09(0.04) 121(8) 0.08(0.04)
CA-SJ2 ENF 53.9 –104.6 0.02(0.01) 197 0.09(0.00) 167(4) 0.06(0.01) 137(17) 0.03(0.02) 123(7) 0.03(0.01)
CA-TP4 ENF 42.7 –80.4 0.67(0.02) 107(8) 0.66(0.06) 99(8) 0.65(0.04) 61(30) 0.52(0.14) 19 0.43
CA-WP1 MF 55.0 –112.5 0.12(0.00) 159(7) 0.22(0.02) 155(6) 0.21(0.02) 143(16) 0.19(0.05) 103(28) 0.14(0.02)
CH-Oe1 GRA 47.3 7.7 0.87(0.24) 85(28) 0.83(0.24) 58(13) 0.84(0.24) 43 0.73 – –
CN-HaM GRA 37.4 101.2 0.02 182 0.08 159 0.06 148 0.06 98(12) 0.03(0.01)
CZ-BK1 ENF 49.5 18.5 0.57(0.06) 112(19) 0.54(0.07) 105(22) 0.53(0.08) 47(1) 0.56(0.03) – –
DE-Bay ENF 50.1 11.9 1.20(0.13) 127(32) 1.22(0.21) 77(30) 1.18(0.15) 91 1.11 – –
DE-Geb CRO 51.1 10.9 0.59(0.28) 87(7) 0.57(0.27) 34(26) 0.45(0.12) – – – –
DE-Hai DBF 51.1 10.5 1.06(0.15) 74(22) 1.01(0.12) 68(21) 1.01(0.14) 76 0.92 – –
DE-Meh GRA 51.3 10.7 0.57(0.09) 96(20) 0.54(0.06) 81(4) 0.47(0.12) – – – –
DE-Tha ENF 51.0 13.6 1.00(0.10) 85(21) 0.94(0.18) 53(29) 0.87(0.12) 48(38) 0.85(0.06) – –
DK-Sor DBF 55.5 11.6 1.62(0.22) 71(35) 1.44(0.25) 63(33) 1.39(0.32) – – – –
FI-Hyy ENF 61.8 24.3 0.47(0.14) 153(21) 0.55(0.11) 132(25) 0.50(0.13) 99(26) 0.44(0.13) 48(14) 0.42(0.13)
FI-Kaa BWET 69.1 27.3 0.15(0.06) 191(13) 0.18(0.06) 182(9) 0.17(0.06) 147(16) 0.15(0.05) 100(19) 0.13(0.04)
FI-Sod ENF 67.4 26.6 0.32(0.18) 183(14) 0.42(0.10) 166(9) 0.40(0.10) 146(15) 0.35(0.15) 113(11) 0.30(0.19)
FR-Hes DBF 48.7 7.1 1.17(0.24) 57(31) 1.00(0.22) 55(28) 1.04(0.18) – – – –
HU-Bug GRA 46.7 19.6 0.45(0.14) 92(3) 0.42(0.14) 67(25) 0.42(0.13) 33(26) 0.41(0.19) – –
IT-Amp GRA 41.9 13.6 0.97(0.24) 93(23) 1.10(0.64) 43(32) 0.43(0.08) 24 0.23 – –
IT-Col DBF 41.8 13.6 0.75(0.15) 83(53) 0.72(0.00) 101 0.67 – – – –
IT-Mbo GRA 46.0 11.0 0.84(0.20) 141(29) 0.91(0.12) 98(19) 0.78(0.23) 68(37) 0.77(0.18) – –
IT-Ren ENF 46.6 11.4 0.31(0.13) 150(19) 0.38(0.07) 118(21) 0.32(0.15) 58(35) 0.29(0.18) – –
JP-Tak DBF 36.1 137.4 0.53(0.17) 123(16) 0.58(0.17) 94(11) 0.52(0.17) 77(7) 0.50(0.16) – –
JP-Tom MF 42.7 141.5 0.46(0.05) 114(14) 0.51(0.02) 93(14) 0.47(0.03) 55(36) 0.46(0.06) – –
NL-Loo ENF 52.2 5.7 2.06(0.43) 63(34) 1.54(0.74) 46(36) 1.41(1.02) 16 0.69 – –
RU-Fyo ENF 56.5 32.9 0.78(0.27) 143(19) 0.91(0.19) 130(10) 0.86(0.21) 101(29) 0.81(0.25) 62(30) 0.62(0.15)
US-Atq AWET 70.5 –157.4 0.00(0.00) 254(14) 0.02(0.01) 231(10) 0.01(0.00) 219(3) 0.01(0.00) 185(5) 0.01(0.00)
US-Bkg GRA 44.3 –96.8 0.13(0.10) 124(5) 0.15(0.07) 117(0) 0.14(0.08) 104(14) 0.12(0.05) 59(35) 0.11(0.05)
US-Bo1 CRO 40.0 –88.3 0.40(0.26) 96(18) 0.22(0.07) 69(28) 0.20(0.11) 31(10) 0.15(0.18) – –
US-Bo2 CRO 40.0 –88.3 0.53(0.49) 84(14) 0.50(0.50) 68(29) 0.53(0.47) – – – –
US-Ha1 DBF 42.5 –72.2 1.34(0.43) 110(16) 1.43(0.44) 88(3) 1.35(0.54) 59(13) 1.23(0.38) 32 1.19
US-Ho1 ENF 45.2 –68.7 0.52(0.13) 130(16) 0.62(0.13) 109(16) 0.53(0.10) 80(20) 0.46(0.11) 38(20) 0.29(0.05)
US-IB2 GRA 41.8 –88.2 0.37(0.13) 103(15) 0.38(0.04) 67(28) 0.34(0.09) 60(29) 0.34(0.07) – –
US-Ivo AWET 68.5 –155.8 0.03(0.02) 239(26) 0.03(0.03) 233(25) 0.03(0.02) 223(21) 0.02(0.02) 186(7) 0.02(0.01)
US-LPH DBF 42.5 –72.2 0.75(0.21) 119(11) 0.81(0.19) 113(15) 0.79(0.20) 87(10) 0.74(0.19) 26(6) 0.62(0.28)
US-MMS DBF 39.3 –86.4 0.91(0.18) 77(12) 0.87(0.12) 60(21) 0.84(0.12) 25(9) 0.75(0.21) – –
US-Moz DBF 38.7 –92.2 0.91(0.21) 64(26) 0.76(0.38) 37 0.50 – – – –
US-NR1 ENF 40.0 –105.5 0.64(0.27) 169(41) 0.77(0.19) 150(19) 0.73(0.24) 131(38) 0.70(0.22) 72 0.44
US-Ne1 CRO 41.2 –96.5 0.62(0.03) 92(10) 0.61(0.03) 73(25) 0.58(0.05) 57(17) 0.59(0.08) – –
US-Ne2 CRO 41.2 –96.5 0.59(0.12) 95(9) 0.58(0.11) 79(22) 0.55(0.10) 52(17) 0.51(0.12) – –
US-Ne3 CRO 41.2 –96.4 0.55(0.06) 94(8) 0.59(0.10) 79(17) 0.55(0.10) 58(17) 0.54(0.14) 18 0.32
US-PFa MF 45.9 –90.3 0.53(0.12) 141(1) 0.55(0.08) 137(1) 0.54(0.09) 112(24) 0.51(0.07) 44(17) 0.44(0.15)
US-Syv MF 46.2 –89.3 0.42(0.36) 148(20) 0.52(0.32) 131(12) 0.43(0.36) 110(29) 0.40(0.33) 87(21) 0.32(0.44)
US-UMB DBF 45.6 –84.7 0.77(0.05) 121(21) 0.77(0.09) 110(17) 0.76(0.09) 82(17) 0.71(0.08) 53 0.73
US-WCr DBF 45.8 –90.1 0.45(0.17) 140(17) 0.58(0.19) 118(23) 0.50(0.17) 101(17) 0.44(0.16) 73(11) 0.40(0.17)
US-Wrc ENF 45.8 –122.0 0.84 70 1.08 – – – – – –

Type: DBF: deciduous broadleaf forests; ENF: evergreen needleleaf forests; GRA: grasslands; CRO: croplands; BWET and AWET are boreal and arctic wetlands respectively;
MF (mixed forests).
Lat. and Lon. are latitude and longitude, respectively.
WLEN is the winter length (unit: day).
Reco is mean winterReco rates (g C m−2 d−1).
D AT0, D AT-2, D AT-5 and DAT-10 are defined as the period during which the 10 day smoothed air temperature remained below 0◦C, −2◦C, −5◦C and−10◦C for at least five
consecutive days; DTM is defined as the 90-day period from 1 December to 28 February.
SD is standard deviation.
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