74 research outputs found

    Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence

    Full text link
    Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show the spectral behavior of classical Kolmogorov fluid turbulence over an inertial subrange and departures from this at short wavelengths, where energy should be dissipated. Here we present the first measurements of the electric field fluctuation spectrum over the inertial and dissipative wavenumber ranges in a β1\beta \gtrsim 1 plasma. The k5/3k^{-5/3} inertial subrange is observed and agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed in this regime is shown to be consistent with the Alfv\'en speed. At smaller wavelengths kρi1k \rho_i \geq 1 the electric spectrum is softer and is consistent with the expected dispersion relation of short-wavelength kinetic Alfv\'en waves. Kinetic Alfv\'en waves damp on the solar wind ions and electrons and may act to isotropize them. This effect may explain the fluid-like nature of the solar wind.Comment: submitted; 4 pages + 3 figure

    Initial results from the Helios-1 Search-coil Magnetometer experiment

    Get PDF
    The Helios search-coil magnetometer experiments provide a unique potential for studies of electromagnetic plasma wave modes in the solar wind between 0.3–1 A.U. because of excellent background noise levels, high time-resolution and high accuracy. Daily average spectral densities (γ √Hz) in the frequency range from 4.7–220 Hz show a pronounced increase as the sun is approached with complex superposed variations. Their values have a range of more than an order of magnitude. The shock of January 6, 1975 provides an interesting example for the use of high time-resolution spectral data. The fine structure and the long term variations in wave fields after the perpendicular shock are discussed. Also two interesting examples of "magnetic holes" are presented.           ARK: https://n2t.net/ark:/88439/y002056 Permalink: https://geophysicsjournal.com/article/116 &nbsp

    Spectral features of solar wind turbulent plasma

    Full text link
    Spectral properties of a fully compressible solar wind Hall Magnetohydrodynamic plasma are investigated by means of time dependent three dimensional Hall MHD simulations. Our simulations, in agreement with spacecraft data, identify a spectral break in turbulence spectra at characteristic length-scales associated with electromagnetic fluctuations that are smaller than the ion gyroradius. In this regime, our 3D simulations show that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial range spectrum close to k7/3k^{-7/3}. The onset of the spectral break in our simulations can be ascribed to the presence of nonlinear Hall interactions that modify the spectral cascades. Our simulations further show that the underlying charachteristic turbulent fluctuations are spectrally anisotropic, the extent of which depends critically on the local wavenumber. The fluctuations associated with length scales smaller than the ion gyroradius are highly compressible and tend to exhibit a near equipartition in the velocity and magnetic fields. Finally, we find that the orientation of velocity and magnetic field fluctuations critically determine the character of nonlinear interactions that predominantly govern a Hall MHD plasma, like the solar wind.Comment: This paper is accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journa

    Aplicación de un modelo de simulación a la evaluación de una zona regable

    Get PDF
    [ES] La mejora en la gestión del riego en las zonas regables españolas es cada día más necesaria. Para contribuir a esta tarea, se ha elaborado un modelo de simulación que permite el análisis y la evaluación del manejo del agua en la zona regable del Genil – Cabra, en la provincia de Córdoba. Con este modelo y un indicador de funcionamiento se ha logrado hacer una primera evaluación de la zona, tanto por cultivos como espacialmente. El contraste entre el agua aplicada en el riego y la dotación económicamente óptima calculada por el modelo indicó que en el año 1996/97, la zona se regó deficitariamente, aplicándose algo menos de la mitad (45%) de los requerimientos óptimos calculados. El análisis espacial ha posibilitado determinar zonas en donde el aporte de agua por parte del agricultor está más próximo a las necesidades óptimas de los cultivos.Lorite, I.; Mateos, L.; Fereres Castiel, E. (2003). Aplicación de un modelo de simulación a la evaluación de una zona regable. Ingeniería del agua. 10(4):517-525. https://doi.org/10.4995/ia.2003.2594OJS517525104Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E. y Rasmussen, J. (1986). An introduction to the European hydrological system - Systeme hydrologique europeen, "SHE", 2: Structure of a physically-based, distributed modelling system. J. Hydrol. 87, 61-77.Allen, R.G., Pereira, L.S., Raes, D. y Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements, Irrigation and Drainage Paper 56, FAO, Roma, Italia.Allen, R.G. (2000). Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study. J. Hydrol. 299, 27-41.Anyoji, H y Wu, I.P. (1994). Normal distribution water application for drip irrigation schedules. Trans. ASAE 37, 159-164.Beinroth, F.H., Jones, J.W., Knapp, E.B., Papajorgji, P. y Luyten, J. (1998). Evaluation of land resources using crop models and a GIS. En Understanding options for agricultural production. G.Y. Tsuji, G. Hoogenboom y P.K. Thornton, eds. Kluwer Academic Publishers. Gran Bretaña., 293-311.Burt, C.M. y Styles, S.W. (1999). Modern water control and management practices in irrigation. Impact on performance. Water Reports 19. FAO. Roma. Italia.Calixte, J.P., Beinroth, F.H., Jones J.W. y Lal H. (1992). Linking DSSAT to a Geographic Information System. Agrotechnology Tranfer 15, 1-7.Coelho M.B., Villalobos, F.J., Mateos, L. (2002). Modeling root growth and the soil-plant-atmosphere continuum of cotton crops. Agric. Water Manage. (En prensa).Dechmi, F., Playán, E. y Faci, J.M. (1999). Estudio de los factores que determinan el uso del agua en el polígono de la loma de Quinto de Ebro. XV Congreso Nacional de Riegos. AERYD 227-234.Doorenbos, J. y Kassam, A.H. (1979). Yield response to water. Irrigation and Drainage Paper 33. FAO. Roma. Italia.Doorenbos, J. y Pruitt, W.O. (1977). Crop water requirements. Irrigation and Drainage Paper 24. FAO. Roma. Italia.Droogers, P. y Kite, G. (1999). Water productivity from integrated basin modeling. Irrigation and Drainage Systems 13, 275-290.Droogers, P., Kite, G. y Murray-Rust, H. (2000). Use of simulation models to evaluate irrigation performance including water productivity, risk and system analyses. Irrigation Sci. 19, 139-145.D'urso, G., Menenti, M. y Santini, A. (1999). Regional application of one-dimensional water flow models for irrigation management. Agric. Water Manage. 40, 291-302.Engel, T., Hoogenboom, G., Jones, J.W. y Wilkens, P.W. (1997). AEGIS/WIN: A computer program for the application of crop simulation models across geographic areas. Agron. J. 89, 919-928.Faci, J.M., Bensaci, A., Slatni, A. y Playán, E. (2000). A case study for irrigation modernisation. I. Characterisation of the district and analysis of water delivery records. Agric. Water Manage. 42:313-334.Gilot, L., Calvez, R., Le Goulven, P. y Ruf, T. (1997). Evaluating water delivery in tertiary units. Part 2: A case study, Urcuqui, a farmer-managed irrigation system in the Andes. Agric. Water Manage. 32, 163-179.Hartkamp, A.D., White, J.W. y Hoogenboom, G. (1999). Interfacing Geographic Information Systems with Agronomic Modeling: A Review. Agron. J. 91, 761-772.Kalu, I.L., Paudyal, G.N. y Gupta, A.D. (1995). Equity and efficiency issues in irrigation water distribution. Agric. Water Manage. 28, 335-348.Lal, H., Hoogenboom, G., Calixte, J-P., Jones, J.W. y Beinroth, F.H. (1993). Using crop simulation models and GIS for regional productivity analysis. Trans. ASAE 36(1), 175-184.Malano, H. y Burton, M. (2000). Guidelines for benchmarking performance in the irrigation and drainage sector. IPTRID Secretariat. FAO. Roma. Italia.Mallawaarachchi, T., Walker, P.A., Young, M.D., Smyth, R.E. y Lynch, H.S. (1996). GIS-based integrated modelling systems for natural resource management. Agric. Syst. 50, 169-189.Ministerio de Agricultura, Pesca y Alimentación, 1998. Plan Nacional de Regadíos (Horizonte 2007). MAPA. Madrid, 229p.Mantovani, E.C., Villalobos, F.J., Orgaz, F. y Fereres, E. (1995). Modelling the effects of sprinkler irrigation uniformity on crop yield. Agric. Water Manage. 27, 243-257.Ministerio de Medio Ambiente (1998). El Libro Blanco del Agua en España. MIMAM. Madrid, 855p.Molden, D.J. y Gates, T.K. (1990). Performance measures for evaluation of irrigation-water-delivery systems. Journal of Irrigation and Drainage Engineering 116(6), 804-823Prajamwong, S., Merkley, G.P. y Allen, R.G. (1997). Decision support model for irrigation water management. J. Irrig. Drain. Eng. 123(2), 106-113.Roberts, G., France, M. y Robinson, M. (1992). Computing the water balance of a small agricultural catchment in southern England by consideration of different land-use types. I. Land classification using remotely-sensed imagery. Agric. Water Manage. 21, 145-154.Shih, S.F. y Jordan, J.D. (1991). Use of Landsat thermal-IR data and GIS in soil moisture assessment. J. Irrig. Drain. Eng. 119(5), 868-879.Soil Conservation Service (1972). National engineering handbook, USDA-SCS, U.S. Government Printing Office, Washington, D.C.Sarma, P.B.S. y Rao, V.V. (1997). Evaluation of an irrigation water management scheme - a case study. Agric. Water Manage. 32, 181-195.Taylor H.M. (1983). Managing root systems for efficient water use: An overview. Capítulo 3ª en Limitations to Efficient Water Use in Crop Production. H.M. Taylor, W.R. Jordan y T.R. Sinclair, eds., ASA-CSSA-SSSA, Madison, Wisconsin, 87-113.Van Aelst, P.V., Ragab, R.A., Feyen, J. y Raes, D. (1988). Improving irrigation management by modelling the irrigation schedule. Agric. Water Manage. 13, 113-125.Williams, J.R., Jones, C.A., Kiniry, J.R. y Spanel, A. (1989). The EPIC Crop Growth Model. Trans. ASAE 32, 497-511.Williams, J.R. (1991). Runoff and water erosion. Capítulo 18 en Modeling Plant and Soil Systems. J. Hanks y J.T. Ritchie, eds., ASA-CSSA-SSSA, Madison, Wisconsin, 439-455.Wu, I.P. (1988). Linearized water application function for drip irrigation schedules. Trans. ASAE 31, 1743-174

    Untersuchung von schnellen magnetischen Fluktuationen im solaren Wind zwischen 0.3 AE und 1.0 AE

    No full text
    6 tabs., 35 figs., many refs.SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore