Magnetohydrodynamic (MHD) turbulence in the solar wind is observed to show
the spectral behavior of classical Kolmogorov fluid turbulence over an inertial
subrange and departures from this at short wavelengths, where energy should be
dissipated. Here we present the first measurements of the electric field
fluctuation spectrum over the inertial and dissipative wavenumber ranges in a
β≳1 plasma. The k−5/3 inertial subrange is observed and
agrees strikingly with the magnetic fluctuation spectrum; the wave phase speed
in this regime is shown to be consistent with the Alfv\'en speed. At smaller
wavelengths kρi≥1 the electric spectrum is softer and is consistent
with the expected dispersion relation of short-wavelength kinetic Alfv\'en
waves. Kinetic Alfv\'en waves damp on the solar wind ions and electrons and may
act to isotropize them. This effect may explain the fluid-like nature of the
solar wind.Comment: submitted; 4 pages + 3 figure