45 research outputs found
Clinical significance of metabolic tumor volume by PET/CT in stages II and III of diffuse large B cell lymphoma without extranodal site involvement
The objective of this study was to investigate whether metabolic tumor volume (MTV) by positron emission tomography (PET) can be a potential prognostic tool when compared with Ann Arbor stage, in stages II and III nodal diffuse large B cell lymphoma (DLBCL). We evaluated 169 patients with nodal stages II and III DLBCL who underwent measurements with PET prior to rituximab combined with cyclophosphamide, adriamycin, vincristine, and prednisone (R-CHOP). Cutoff point of MTV was measured using the receiver operating characteristic (ROC) curve. During a median period of 36 months, stage II was 59.2% and III was 40.8%. Using the ROC curve, the MTV of 220 cm3 was the cutoff value. The low MTV group (<220 cm3) had longer progression-free survival (PFS) and overall survival (OS), compared with the high MTV group (≥220 cm3) (p < 0.001, p < 0.001). Stage II patients had longer survival than those in stage III (PFS, p = 0.011; OS, p = 0.001). The high MTV group had lower PFS and OS patterns, regardless of stage, compared with the low MTV group (p < 0.001, p < 0.001). Multivariate analysis revealed an association of the high MTV group with lower PFS and OS (PFS, hazard ratio (HR) = 5.300, p < 0.001; OS, HR = 7.009, p < 0.001), but not stage III (PFS, p = 0.187; OS, p = 0.054). Assessment of MTV by PET had more potential predictive power than Ann Arbor stage in the patients that received R-CHOP
New genetic loci link adipose and insulin biology to body fat distribution.
Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms
A Comparative Study of Deep CNN in Forecasting and Classifying the Macronutrient Deficiencies on Development of Tomato Plant
During the process of plant growth, such as during the flowering stages and fruit development, the plants need to be provided with the various minerals and nutrients to grow. Nutrient deficiency is the cause of serious diseases in plant growth, affecting crop yield. In this article, we employed artificial neural network models to recognize, classify, and predict the nutritional deficiencies occurring in tomato plants (Solanum lycopersicum L.). To classify and predict the different macronutrient deficiencies in the cropping process, this paper handles the captured images of the macronutrient deficiency. This deficiency during the fruiting and leafing phases of tomato plant are based on a deep convolutional neural network (CNN). A total of 571 images were captured with tomato leaves and fruits containing the crop species at the growth stage. Among all images, 80% (461 captured images) were used for the training dataset and 20% (110 captured images) were applied for the validation dataset. In this study, we provide an analysis of two different model architectures based on convolutional neural network for classifying and predicting the nutrient deficiency symptoms. For instance, Inception-ResNet v2 and Autoencoder with the captured images of tomato plant growth under the greenhouse conditions. Moreover, a major type of statistical structure, namely Ensemble Averaging, was applied with two aforementioned predictive models to increase the accuracy of predictive validation. Three mineral nutrients, i.e., Calcium/Ca2+, Potassium/K+, and Nitrogen/N, are considered for use in evaluating the nutrient status in the development of tomato plant with these models. The aim of this study is to predict the nutrient deficiency accurately in order to increase crop production and prevent the emergence of tomato pathology caused by lack of nutrients. The predictive performance of the three models in this paper are validated, with the accuracy rates of 87.273% and 79.091% for Inception-ResNet v2 and Autoencoder, respectively, and with 91% validity using Ensemble Averaging
Biochar-Improved Growth and Physiology of Ehretia asperula under Water-Deficit Condition
Ehretia asperula’s physiological responses to growth performance following oak-wood biochar application under water stress conditions (WSC) and no water stress conditions (non-WSC) were investigated in a pot experiment. Biochar (WB) was incorporated into the soil at concentrations of 0, 5, 10, 15, and 20 tons ha−1 before transplanting Ehretia asperula in the pots. One month after transplanting, Ehretia asperula plants were put under water stress by withholding water for ten days. Water stress significantly decreased the growth and physiology of Ehretia asperula. Under WSC, the application of WB at the concentrations of 15 and 20 tons ha−1 to the soil increased the plant height; number of leaves; fresh and dry weight of the roots, shoots, and leaves; Fv/Fm; chlorophyll content; leaf relative water content; and soil moisture as well as decreased the relative ion leakage. The application of WB enhanced drought tolerance in Ehretia asperula plants by lowering the wilting point. The findings suggest that WB application at the concentration of 15 tons ha−1 could be recommended for ensuring the best physiological responses and highest growth of Ehretia asperula plants
Surface modification of polyimide membranes by diamines for H2 and CO2 separation
10.1002/marc.200600147Macromolecular Rapid Communications2713998-1003MRCO
The Immunobiology of Nipah Virus
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged in Malaysia in 1998. It is a human pathogen capable of causing severe respiratory infection and encephalitis. The natural reservoir of NiV, Pteropus fruit bats, remains a continuous virus source for future outbreaks, although infection in the bats is largely asymptomatic. NiV provokes serious disease in various mammalian species. In the recent human NiV outbreaks in Bangladesh and India, both bats-to-human and human-to-human transmissions have been observed. NiV has been demonstrated to interfere with the innate immune response via interferon type I signaling, promoting viral dissemination and preventing antiviral response. Studies of humoral immunity in infected NiV patients and animal models have shown that NiV-specific antibodies were produced upon infection and were protective. Studies on cellular immunity response to NiV infection in human and animal models also found that the adaptive immune response, specifically CD4+ and CD8+ T cells, was stimulated upon NiV infection. The experimental vaccines and therapeutic strategies developed have provided insights into the immunological requirements for the development of successful medical countermeasures against NiV. This review summarizes the current understanding of NiV pathogenesis and innate and adaptive immune responses induced upon infection
Clinical characteristics of persistent postural‐perceptual dizziness and its visual subtype in Korean patients: A multicenter cross‐sectional study
Abstract Objectives Persistent postural‐perceptual dizziness (PPPD) is a chronic functional vestibular disorder for which the Bárány Society has established diagnostic criteria. This nationwide multicenter study aims to investigate the clinical features of individuals with definite PPPD and clinical variant PPPD who do not fully meet the diagnostic criteria, with a particular focus on visual exaggeration. Methods Between September 2020 and September 2021, a total of 76 individuals with definite PPPD and 109 individuals with clinical variant PPPD who did not meet all three exacerbating factors outlined in Criterion B were recruited from 18 medical centers in South Korea. The study gathered information on demographic factors, clinical manifestations, balance scales, and personality assessments. Results Comparative analysis between groups with definite PPPD and clinical variant with visual exacerbation revealed no significant differences in sociodemographic characteristics, clinical course, dizziness impact, and specific precipitants. Only disease duration was significantly longer in definite PPPD compared with variant with visual exacerbation. However, the variant without visual exacerbation displayed significantly reduced rates of panic disorder, diminished space‐motion discomfort, lesser impact of dizziness, and decreased prevalence of depression when compared with the definitive PPPD. Conclusion This is the first comprehensive nationwide study examining clinical features of both definite PPPD patients and its clinical variants, considering visual exacerbating factors. Differences in dizziness and personality traits emerged between definite PPPD and its potential variant without visual issues. Our results highlight the possibility of a distinct clinical variant of PPPD influenced by visual dependency
Recommended from our members
Atomic-Scale Engineering of the SiC-SiO{sub 2} Interface
We report results from three distinct but related thrusts that aim to elucidate the atomic-scale structure and properties of the Sic-SiO{sub 2} interface. (a) First-principles theoretical calculations probe the global bonding arrangements and the local processes during oxidation; (b) Z-contrast atomic-resolution transmission electron microscopy and electron-energy-loss spectroscopy provide images and interface spectra, and (c) nuclear techniques and electrical measurements are used to profile N at the interface and determine interface trap densities