66 research outputs found

    Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish

    Get PDF
    International audienceHeightened concern over endocrine-disrupting chemicals is driven by the hypothesis that they could reduce reproductive success and affect wildlife populations, but there is little evidence for this expectation. The pharmaceutical ethynylestradiol (EE(2)) is a potent endocrine modulator and is present in the aquatic environment at biologically active concentrations. To investigate impacts on reproductive success and mechanisms of disruption, we exposed breeding populations (n = 12) of zebrafish (Danio rerio) over multiple generations to environmentally relevant concentrations of EE(2). Life-long exposure to 5 ng/L EE(2) in the F, generation caused a 56% reduction in fecundity and complete population failure with no fertilization. Conversely, the same level of exposure for up to 40 days in mature adults in the parental F(0) generation had no impact on reproductive success. Infertility in the F, generation after life-long exposure to 5 ng/L EE(2) was due to disturbed sexual differentiation, with males having no functional testes and either undifferentiated or intersex gonads. These F, males also showed a reduced vitellogenic response when compared with F(0) males, indicating an acclimation to EE(2) exposure. Deputation studies found only a partial recovery in reproductive capacity after 5 months. Significantly, even though the F(0) males lacked functional testes, they showed male-pattern reproductive behavior, inducing the spawning act and competing with healthy males to disrupt fertilization. Endocrine disruption is therefore likely to affect breeding dynamics and reproductive success in group-spawning fish. Our findings raise major concerns about the population-level impacts for wildlife of long-term exposure to low concentrations of estrogenic endocrine disruptors

    Analysis of Lipid Metabolism, Immune Function, and Neurobehavior in Adult C57BL/6JxFVB Mice After Developmental Exposure to di (2-ethylhexyl) Phthalate

    Get PDF
    Background: Developmental exposure to di (2-ethylhexyl) phthalate (DEHP) has been implicated in the onset of metabolic syndrome later in life. Alterations in neurobehavior and immune functions are also affected by phthalate exposure and may be linked to the metabolic changes caused by developmental exposure to DEHP.Objectives: Our goal was to study the effects of developmental exposure to DEHP in the context of metabolic syndrome by integrating different parameters to assess metabolic, neurobehavioral, and immune functions in one model.Methods: Female C57BL/6J mice were exposed to DEHP through the diet during gestation and lactation at doses ranging from 3.3 to 100,000 μg/kg body weight/day (μkd). During a 1-year follow-up period, a wide set of metabolic parameters was assessed in the F1 offspring, including weekly body weight measurements, food consumption, physical activity, glucose homeostasis, serum lipids, and endocrine profile. In addition, neurobehavioral and immune functions were assessed by sweet preference test, object recognition test, acute phase protein, and cytokines production. Animals were challenged with a high fat diet (HFD) in the last 9 weeks of the study.Results: Increased free fatty acids (FFA) and, high density lipoprotein (HDL-C) were observed in serum, together with a decrease in glycated hemoglobin levels in blood of 1-year old male DEHP-exposed offspring after HFD challenge. For the most sensitive endpoint measured (FFA), a lower bound of the 90%-confidence interval for benchmark dose (BMD) at a critical effect size of 5% (BMDL) of 2,160 μkd was calculated. No persistent changes in body weight or fat mass were observed. At 33,000 μkd altered performance was found in the object recognition test in males and changes in interferon (IFN)γ production were observed in females.Conclusions: Developmental exposure to DEHP combined with HFD in adulthood led to changes in lipid metabolism and neurobehavior in male offspring and cytokine production in female offspring. Our findings contribute to the evidence that DEHP is a developmental dyslipidemic chemical, however, more research is needed to further characterize adverse health outcomes and the mechanisms of action associated with the observed sex-specific effects

    A 28-day oral dose toxicity study enhanced to detect endocrine effects of hexabromocyclododecane in wistar rats

    Get PDF
    A 28-day repeated dose study in rats (OECD407) enhanced for endocrine and immune parameters was performed with hexabromocyclododecane (HBCD). Rats were exposed by daily gavage to HBCD dissolved in corn oil in 8 dose groups with doses ranging between 0 and 200 mg/kg bw per day (mkd). Evaluation consisted of dose-response analysis with calculation of a benchmark dose at the lower 95% one-sided confidence bound (BMDL) at predefined critical effect sizes (CESs) of 10-20%. The most remarkable findings were dose-related effects on the thyroid hormone axis, that is, decreased total thyroxin (TT4, BMDL 55.5 mkd at CES--10%), increased pituitary weight (29 mkd at 10%) and increased immunostaining of TSH in the pituitary, increased thyroid weight (1.6 mkd at 10%), and thyroid follicle cell activation. These effects were restricted to females. Female rats also showed increased absolute liver weights (22.9 mkd at 20%) and induction of T4-glucuronyl transferase (4.1 mkd at 10%), suggesting that aberrant metabolization of T4 triggers feedback activation of the thyroid hormone system. These effects were accompanied by possibly secondary effects, including increased cholesterol (7.4 mkd at 10%), increased tibial bone mineral density (> 49 mkd at 10%), both in females, and decreased splenocyte counts (0.3-6.3 mkd at 20%; only evaluated in males). Overall, female rats appeared to be more sensitive to HBCD than male rats, and an overall BMDL is proposed at 1.6 mkd, based on a 10% increase of the thyroid weight, which was the most sensitive parameter in the sequence of events

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Fish embryo toxicity test, threshold approach, and moribund as approaches to implement 3R principles to the acute fish toxicity test.

    No full text
    The acute fish toxicity test (AFT) is requested by EU legal frameworks for hazard classification and risk assessment. AFT is one of the few regulatory required tests using death as an endpoint. This paper reviews efforts made to reduce, refine and replace (3Rs) AFT. We make an inventory of information requirements for AFT, summarize studies on 3Rs of AFT and give recommendations. The fish embryo toxicity test (FET) is proposed as a replacement of AFT and analyses have focused on two aspects: assessing the capacity of FET in predicting AFT and defining the applicability domain of FET. Six comparison studies have consistently shown a strong correlation of FET and AFT. In contrast, the applicability domain of FET has not yet been fully defined. FET has not yet been accepted as a replacement of AFT by any EU legal frameworks to fulfill information requirements because FET is insensitive to some chemicals. It is recommended that the outlier chemicals that do not correlate between FET and AFT should be further investigated. When necessary, additional FET data should be generated. Another effort to reduce and refine AFT is incorporation of FET into the threshold approach. Furthermore, moribund as an endpoint of fish death has been introduced in revising AFT guideline to reduce the duration of suffering for refinement. This endpoint, however, needs further work on the link of moribund and death. Global regulatory acceptance of the moribund endpoint would be critical for this development
    corecore