161 research outputs found

    Hyperplasia of epithelium adjacent to transitional cell carcinoma can be induced by growth factors through paracrine pathways

    Get PDF
    Hyperplasia of transitional cell epithelium adjacent to human transitional cell carcinomas (TCC) is a common finding in pathology. This hyperplasia may be a precancerous aberration. Alternatively, it has been suggested that the hyperplasia is due to paracrine action of tumour-derived growth factors. In this study we tested the latter hypothesis using the mouse tumorigenic TCC cell line NUC-1. Transplantation of NUC-1 tumour cells into the urinary bladder submucosa of syngeneic mice in vivo induced hyperplasia of normal adjacent urothelium in all tested mice. Implantation of normal mouse bladder mucosa did not induce urothelial hyperplasia. In vitro, conditioned medium of NUC-1 cells induced the proliferation of the mouse urothelial cell line g/G, which closely resembles normal urothelial cells. This induction was inhibited by transforming growth factor β1 (TGFβ1). Similarly, TGFβ1 inhibited the fibroblast growth factor-1 (FGF-1) and FGF-2 induced proliferation of g/G cells. Chemico-physical examination, bioassays with conditioned media, and RNA analysis of NUC-1 cells revealed that these cells secreted a growth factor with FGF-like properties. These results indicate that epithelial hyperplasia surrounding carcinomas is not necessarily a precancerous aberration, but may result from direct paracrine action of tumour-derived growth factors

    Regulation of the zebrafish goosecoid promoter by mesoderm inducing factors and Xwnt1

    Get PDF
    Goosecoid is a homeobox gene that is expressed as an immediate early response to mesoderm induction by activin. We have investigated the induction of the zebrafish goosecoid promoter by the mesoderm inducing factors activin and basic fibroblast growth factor (bFGF) in dissociated zebrafish blastula cells, as well as by different wnts in intact embryos. Activin induces promoter activity, while bFGF shows a cooperative effect with activin. We have identified two enhancer elements that are functional in the induction of the goosecoid promoter. A distal element confers activin responsiveness to a heterologous promoter in the absence of de novo protein synthesis, whereas a proximal element responds only to a combination of activin and bFGE Deletion experiments show that both elements are important for full induction by activin. Nuclear proteins that bind to these elements are expressed in blastula embryos, and competition experiments show that an octamer site in the activin responsive distal element is specifically bound, suggesting a role for an octamer binding factor in the regulation of goosecoid expression by activin. Experiments in intact embryos reveal that the proximal element contains sequences that respond to Xwnt1, but not to Xwnt5c. Furthermore, we show that the distal element is active in a confined dorsal domain in embryos and responds to overexpression of activin in vivo, as well as to dorsalization by lithium. The distal element is to our knowledge the first enhancer element identified that mediates the induction of a mesodermal gene by activin

    Participatory Procedures in Post-Disaster Recovery: A Comparative Legal Approach to Japan, Thailand and Indonesia

    Get PDF
    We have investigated the involvement of activin receptors and TGF beta type I receptor in zebrafish development. Overexpression of either full-length or a truncated form of mouse ActR-IIA interferes with the development. Different splice variants of mouse ActR-IIB have distinct effects; ActR-IIB4 induces abnormal embryos, whereas ActR-IIB2 does not. Activin and TGF beta type I receptors can induce axis duplications. Co-expression of ActR-IA or ActR-IB with the type II activin receptors results in a synergistic increase of the frequency of axis duplication. Moreover, ActR-IIB2 is synergistic with ActR-IA and ActR-IB, demonstrating that ActR-IIB2 can interact with the zebrafish ligand. Overexpression of TGF beta R-I with ActR-IIA or ActR IIB4 results in a synergistic increase in frequency of abnormal embryos, whereas in combination with ActR-IIB2 no such increase occur

    Lefty Blocks a Subset of TGFβ Signals by Antagonizing EGF-CFC Coreceptors

    Get PDF
    Members of the EGF-CFC family play essential roles in embryonic development and have been implicated in tumorigenesis. The TGFβ signals Nodal and Vg1/GDF1, but not Activin, require EGF-CFC coreceptors to activate Activin receptors. We report that the TGFβ signaling antagonist Lefty also acts through an EGF-CFC-dependent mechanism. Lefty inhibits Nodal and Vg1 signaling, but not Activin signaling. Lefty genetically interacts with EGF-CFC proteins and competes with Nodal for binding to these coreceptors. Chimeras between Activin and Nodal or Vg1 identify a 14 amino acid region that confers independence from EGF-CFC coreceptors and resistance to Lefty. These results indicate that coreceptors are targets for both TGFβ agonists and antagonists and suggest that subtle sequence variations in TGFβ signals result in greater ligand diversity

    Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development

    Get PDF
    The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.Toxicolog

    Emerging technologies and their impact on regulatory science

    Get PDF
    There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools

    Calcium-binding lens membrane proteins

    No full text
    corecore